Article

Article title CENTERS FINDING OF FUZZY INTERVAL GRAPHS ON THE BASIS OF STRONG CONNECTIVITY
Authors A.V. Bozhenyuk, S.L. Belyakov, I.N. Rozenberg
Section SECTION II. ALGORITHMS AND SOFTWARE
Month, Year 04, 2014 @en
Index UDC 681.327
DOI
Abstract In this paper the problem of optimal location of service centers is considered by minimax criterion. It is supposed that the information received from Geographic Information System is presented like graph with fuzzy interval distances on directed or undirected edges. To solve this problem, we introduce the concept of fuzzy set fuzzy interval strongly connected graph. Fuzzy set of strong connectivity is an invariant interval fuzzy graph. It is shown that the problem of service centers location is reduced to a problem of finding fuzzy set of strong connectivity. This paper presents a method for finding a fuzzy set of strongly connected fuzzy interval graph. This method is a generalization of Maghout method for finding fuzzy set of fuzzy temporal bases of fuzzy graph. An example of finding strongly connected fuzzy set of fuzzy interval graph is considered here.

Download PDF

Keywords Geographical information system; fuzzy interval; fuzzy interval graph; fuzzy set strong connectivity; linguistic variable.
References 1. Clarke K. Analytical and Computer Cartography. Englewood Cliffs, N.J.: Prentice Hall, 1995.
2. Longley P., Goodchild M., Maguire D., Rhind D. Geographic Information Systems and Science. New York: John Wiley & Sons, Inc., 2001.
3. Zhang J., Goodchild M. Uncertainty in Geographical Information. New York: Taylor & Francis, Inc., 2002.
4. Goodchild M. Modelling Error in Objects and Fields. In: Goodchild, M.F., Gopal, S. (eds.): Accuracy of Spatial Databases. Basingstoke: Taylor & Francis, Inc. – 1989. – P. 107-113.
5. Кофман А. Введение в прикладную комбинаторику. – М.: Наука, 1975.
6. Кристофидес Н. Теория графов. Алгоритмический подход. – М.: Мир, 1978.
7. Malczewski J. GIS and Multicriteria Decision Analysis. – New York: John Wiley & Sons, Inc., 1999.
8. Zadeh L. The Concept of a Linguistic Variable and Its Application to Approximate Reasoning. Inf. Sci. 8, 9, 1975.
9. Берштейн Л.С., Боженюк А.В. Нечеткие графы и гиперграфы. – М.: Научный мир, 2005.
10. Боженюк А.В., Розенберг И.Н., Ястребинская Д.Н. Нахождение живучести нечетких транспортных сетей с применением геоинформационных систем. – М.: Научный мир, 2012. – 176 с.
11. Hansen E. Global Optimization Using Interval Analysis. – New York: Dekker, 1992.
12. Берштейн Л.С., Боженюк А.В. Розенберг И.Н. Моделирование поиска сервисных центров в ГИС нечеткими интервальными графами // Известия ЮФУ. Технические науки. – 2010. – № 5 (106). – С. 7-16.

Comments are closed.