Article

Article title THE ALGORITHM OF CALCULATION OF THE FUNCTIONS SIN(X), COS(X) FOR 16-BIT MICROCONTROLLERS
Authors M.I. Ledovskoy
Section SECTION II. ALGORITHMS AND SOFTWARE
Month, Year 04, 2014 @en
Index UDC 681.3.06(075)
DOI
Abstract When using microcontrollers and embedded systems for various purposes there is a necessity of calculation of elementary functions sin(x) and cos(x). The solution to this problem using standard С-library functions with leads to substantial growth of code and time of calculations for microcontrollers with limited computing power. In this case, the alternative can serve as your own routines based table-algorithmic method, which is implemented using integer arithmetic microcontroller. However, the advantages of table-algorithmic method appear in the case, if the amendments to the tabular values of the functions are computed using the simplest methods of approximation. A negative consequence of use of the mentioned methods is a significant amount of tabular values of the functions that you want to store in memory of the microcontroller. For this reason, the implementation of a table-algorithmic method difficult. In the present paper an algorithm is proposed table-algorithmic method, which in comparison with the similar provides the required accuracy and reduces to 8 times the amount of the tabular values of functions. The algorithm can find application, for example, the creation of different devices with ultra low power consumption-based 16-bit MSP430 microcontrollers without hardware multiplier.

Download PDF

Keywords The function sin(x); cos(x); table-algorithmic method; integer algorithm; microcontroller; error; MATLAB; model
References 1. Керниган Б., Ритчи Д. Язык программирования С. – 2-е изд.: Пер. с англ. – М.: Вильямс, 2010. – 304 с.
2. Попов Б.А., Теслер Г.С. Вычисление функций на ЭВМ: Справочник. – Киев: Наукова думка, 1984. – 600 с.
3. Ромм Я.Е., Аксайская Л.Н. Кусочно-полиномиальная аппроксимации функций, производных и определенных интегралов на основе интерполяции по Ньютону // Известия ЮФУ. Технические науки. – 2008. – № 2 (79). – С. 14-21.
4. Каляев А.В. Теория цифровых интегрирующих машин и структур. – М.: Советское радио, 1970. – 472 с.
5. Ледовской М.И. Обработка вещественных данных в микроконтроллерах с арифметикой фиксированной точки // Известия ТРТУ. – 2004. – № 2 (37). – С. 52-58.
6. Байков В.Д, Смолов В.Б. Специализированные процессоры: итерационные алгоритмы и структуры. – М.: Радио и связь, 1985. – 288 с.
7. Ледовской М.И. Моделирование алгоритма инерциальной навигации в MATLAB-SIMULINK // Ползуновский вестник. – 2011. – № 3/1. – С. 9-11.

Comments are closed.