Article

Article title RELEVANCE MODEL OF SEMISTRUCTURED INFORMATION IN TEMPORAL DATABASES
Authors M.A. Butakova, C.M. Kovalev, E.V. Klimanskaya
Section SECTION III. MODELLING OF COMPLEX SYSTEMS
Month, Year 05, 2014 @en
Index UDC 004.652
DOI
Abstract In the article new approach to modeling and an assessment of relevant search of semistructured information in temporal databases is offered. Connection between information with weak structure of the data kept in distributed network information systems and information temporal, arising in connection with requirements of the appeal to information belonging by the certain period is established. The main models of the description of semistructured information in existing databases are considered. The models of time on the basis of which creation of temporal databases are presented. The models of temporal data storage, and also existing approaches and realization of temporal databases are considered. The existing probabilistic model of information ranging on the basis of repeated Bernoulli language model is presented. The main theoretical result of work is development of repeated Bernoulli language model for information relevance evaluation of semistructured information at its storage in temporal databases.

Download PDF

Keywords Semistructured data; temporal data; databases; information relevance model.
References 1. Luniewski A., Schwarz P., Shoens K., Stamos J., Thomas J. Information Organization using Rufus // In Proc. ACM SIGMOD Int. Conf. Of Management of Data. 1993. – P. 560-561.
2. Gaarsia-Molina H., Papakonstantiniu Y., Quass D., Rajaraman A., Sagiv Y., Ulman J., Windom J. The THIMMIS project: integration of heterogeneous information sources // J. Intell. Inf. Syst. – 1997. – Vol. 8, № 2. – P. 117-132.
3. Buneman P., Davidson S., Suciu D. Programming Constructs for Unstructured Data // In Proc. Workshop on Database Programming Languages. – 1995.
4. Редмонд Э., Уилсон Д.Р. Семь баз данных за семь недель. Введение в современные базы данных и идеологию NoSQL. – М.: ДМК Пресс, 2013. – 384 с.
5. Bubenko J.A. Jr. The temporal dimension in information modeling // Technical Report RC 6187 №26479. – IBM Thomas J Watson Research Center. – 1976.
6. Snodgrass R., Ilsoo Ahn. Temporal Databases // Computer. – 1986. – Vol. 19, № 9. – P. 35-42.
7. Snodgrass R. A taxonomy of time databases // SIGMOD’85 Proc. of the 1985 ACM SIGMOD Int. Conf. on Management of Data. – 1985. – Vol. 14, № 4. – P. 236-246.
8. Snodgrass R. The temporal query language TQuel // ACM Trans. on Database System (TODS). – 1987. – Vol. 12, № 2. – P. 247-298.
9. Snodgrass R. The TSQL2 Temporal Query Language. – Springer Science Business Media, LLC. – 1995. – 647 p.
10. Новиков Б.А. Горшкова Е.А. Темпоральные базы данных: от теории к практическому использованию // Программирование. – 2008. – Т. 34, № 1. – С. 1-6.
11. Al-Kateb M., Ghazal A., Crolotle A., Bhashyam R., Chimanchode J., Pakala S.P. Temporal query processing in Teradata // EDBT’13 Proc. of the 16h Int. Conf. on Extending Database Technology. – 2013. – P. 573-578.
12. Kulkarny K., Michels J.-E. Temporal features in SQL: 2011 // ACM SIGMOD’12. – 2012. – Vol. 41, № 3. – P. 34-43.
13. Robertson S.E. The Probability Ranking Principle in IR // Readings in information retrieval. Morgan Kaufmann Publishers Inc. – San Francisco, 1997. – P. 281-286.
14. Aurenko V., Croft W.B. Relevance-based language models // In Proceeding of SIGIR 2001. – 2001. – P. 120-127.
15. Бутакова М.А., Климанская Е.В., Янц В.И. Мера информационного подобия для анализа слабоструктурированной информации // Современные проблемы науки и образования (электронный научный журнал). – 2013. – № 6.

Comments are closed.