Authors S.L. Belyakov, M.L. Belyakova, A.V. Bozhenyuk, M.N. Savelyeva
Month, Year 05, 2014 @en
Index UDC 51-74
Abstract We consider the problem of optimizing flows in mechanical transport system by rational choice routing strategy. Peculiarity of the problem lies in the fact that we are considering complex of factors, time-dependent exploitation of system. It is assumed that there is a as a change properties of the system and the properties of transported cargo. Optimization process is based on expert knowledge. Assumed that the expert observing the behavior of the system shows his experience by allocating in the transport system subsystems with a specific behavior. Each subsystem is stable temporal characteristics of transportation. Optimization strategy uses algorithms to fixed and dynamic routing. To create routing tables is proposed to use the model of fuzzy temporal hypergraph. We consider fixed and dynamic routing behavior under uncertainty mechanical transport system. It is proposed to modify Dijkstra"s algorithm for the case of a fuzzy temporal hypergraph. Concludes that the evolutionary development of this class of systems as they gain experience of their operation.

Download PDF

Keywords Mechanical transport system; fixed routing; dynamic routing; fuzzy temporal hypergraph; Dijkstra's algorithm.
References 1. Luger G.F. Artificial Intelligence: Structures and Strategies for Complex Problem Solving. Addison Wesley (2004).
2. Black G., Vyatkin V. Intelligent Distributed execution and cyber-physical design of Baggage Handling automation with IEC 61499 // Proc. IEEE Int. Conf. on Industrial Informatics. – 2011. – P. 573-578.
3. Cormen T., Leiserson C. Rivest R., Stein C. Introduction to Algorithms. – 3rd. – MIT Press, 2009.
4. Розенберг И.Н., Беляков С.Л. Программные интеллектуальные оболочки геоинформационных систем. – М.: Научный мир, 2010.
5. Берштейн Л.С., Беляков С.Л., Боженюк А.В. Использование нечетких темпоральных графов для моделирования в ГИС // Известия ЮФУ. Технические науки. – 2012. – № 1 (126). – С. 121-127.
6. Zimmerman H.-J. Fuzzy Set Theory and Its Applications (2nd edition). – Boston/Dordrecht/London: Kluwer Academic Publishers, 1991. – 435 p.
7. Belyakov S., Savelyeva M. The construction of fuzzy time-dependent route in geographic information system // Proc. “East West Fuzzy Colloquium 2013 20thZittau Fuzzy Colloquium”, 2013. – P. 63-69.
8. С.Л.Беляков, Белякова М.Л., Розенберг И.Н., Савельева М.Н. Прецедентный анализ маршрутов на электронных картах // Известия ЮФУ. Технические науки. – 2013. – № 1 (132). – С. 82-89.
9. Беляков С.Л., Савельева М.Н. Кластеризация при логистическом роутинге // Известия ЮФУ. Технические науки. – 2012. – № 4 (129). – С. 242-247.

Comments are closed.