Article

Article title HISTOGRAM APPROACH TO REPRESENTATION AND PROCESSING OF DATA SPACE AND DATA GROUND MONITORING
Authors B.S. Dobronets, O.A. Popova
Section SECTION I. MODELING OF SYSTEMS AND PROCESSES
Month, Year 06, 2014 @en
Index UDC 519.24
DOI
Abstract We study the natural processes on the basis of space and ground-based monitoring. Processing of satellite data for the study of natural processes involves a number of computational procedures to meet system requirements, such as reducing the level of uncertainty in the data, the accuracy and clarity of the results. On the base of Numerical probabilistic analysis is proposed conceptually – histogram approach, which is used to develop procedures for the representation and for processing of information flows, as well as for numerical modeling and representation of the output characteristics of natural objects. It is shown that the application of the procedures developed allows to aggregate the data, reduces the level of information uncertainty and significantly improves the efficiency of the numerical calculations. Numerical probabilistic analysis is a nonparametric approach can be successfully applied to a probabilistic description of systems within a visual interactive simulation, thereby increasing the quality of the research systems. By test examples and some practical problems proved the advantages of this approach over Monte Carlo.

Download PDF

Keywords Numerical probabilistic analysis; modeling of the natural processes; space monitoring; histogram approach; data processing.
References 1. Бураков Д.А., Копылов В.Н., Ромасько В.Ю., Швецова Е.В. Информационная технология прогноза весеннего половодья сибирских рек на основе математического моделирования процесса формирования стока // Информационные системы и технологии. – 2009. – № 3. – С. 64-69.
2. Guide to Hydrological Practices. Volume II. Management of Water Resources and Application of Hydrological Practices. WMO-No. 168. Sixth edition. 2009.
3. Добронец Б.С., Попова О.А. Численные операции над случайными величинами и их приложения // Журн. СФУ. Сер. Матем. и физ. – 2011. – № 2. – С. 229-239.
4. Добронец Б.С., Попова О.А. Элементы численного вероятностного анализа // Вестник Сибирского государственного аэрокосмического университета. – 2012 – № 2 (42). – С. 19-23.
5. Попова О.А. Технология извлечения и визуализации знаний на основе численного вероятностного анализа неопределенных данных // Информатизация и связь. – 2013. – № 2. – С. 63-66.

Comments are closed.