Article

Article title ANALYSIS OF RESISTANCE BLOCK CIPHERS AGAINST ALGEBRAIC CRYPTANALYSIS
Authors L.K. Babenko, E.A. Maro
Section SECTION IV. METHODS AND MEANS OF CRYPTOGRAPHY AND STEGANOGRAPHY
Month, Year 12, 2011 @en
Index UDC 003.26.09
DOI
Abstract This paper is devoted to the investigation of GOST algorithm with regard to its resistance against algebraic cryptanalysis. The general idea of algebraic analysis is based on the representation of initial encryption algorithm as a system of multivariate quadratic equations, which define relations between a secret key and a cipher text. Extended linearization method is evaluated as a method for solving the nonlinear system of equations. The research has shown that 32-round GOST is described by a system of 5 376 quadratic equations, which characterize dependencies between inputs and outputs of S-blocks. The total number of variables is 2 048 and the system contains 9 472 monomials.

Download PDF

Keywords GOST 28147-89; GOST; S-box; systems of multivariate quadratic equations; algebraic cryptanalysis; extended linearization method; Gaussian elimination.
References 1. Courtois N., Pieprzyk J. Cryptanalysis of block ciphers with overdefined systems of equations / N. Courtois, J. Pieprzyk // ASIACRYPT. – 2002. – Р. 267-287.
2. Courtois N., Gregory V. Bard. Algebraic Cryptanalysis of the Data Encryption Standard // 11-th IMA Conference, 2007. – Р. 152-169.
3. Панасенко С.П.Стандарт шифрования ГОСТ 28147-89. Обзор криптоаналитических исследований. // http://www.cio-world.ru/–15 Августа, 2007.
4. Бабенко Л.К., Маро Е.А. Криптоанализ блочных алгоритмов шифрования // Системы высокой доступности. – 2011. – № 2 (7). – С. 13-16.
5. Courtois N., Klimov A., Patarin J., Shamir A. Efficient algorithms for solving overdefined systems of multivariate polynomial equations // EUROCRYPT. – 2000. – Р. 392-407.
6. ГОСТ 28147-89. Системы обработки информации. Защита криптографическая. Алгоритм криптографического преобразования. – М.: Изд-во стандартов, 1989. – 28 с.
7. Шеннон К. Теория связи в секретных системах // http://www.enlight.ru/crypto/
articles/shannon/shann__i.htm.
8. Маро Е.А. Алгебраический криптоанализ упрощенного алгоритма шифрования Rijndael // Известия ЮФУ. Технические науки. – 2009. – № 11 (110). – С. 187-199.
9. Kipnis A., Shamir A., Cryptanalysis of the HFE public key cryptosystem by relinearization // Advances in Cryptology–Crypto’99. – Springer, 1999. – (Lect. NotesComput. Sci. Vol. 1666). – Р. 19-30.
10. Kleiman E., The XL and XSL attacks on Baby Rijndael //http://orion.math.iastate.edu/ dept/thesisarchive/MS/EKleimanMSSS05.pdf.
11. Бабаш А.В., Шанкин Г.П. Криптография. Аспекты защиты. – М.: Издательский дом «Солон-Р», 2002. – 511 с.

Comments are closed.