Article

Article title NETWORK ATTACKS DETECTION SYSTEM BASED ON THE MECHANISMS OF IMMUNE MODEL
Authors V.D. Kotov, V.I. Vasilyev
Section SECTION V. BIOMETRIC AND IMMUNOLOGICALMETHODS OF PROTECTION OF THE INFORMATION
Month, Year 12, 2011 @en
Index UDC 681.324
DOI
Abstract The anomaly detection systems have big potential in the network security, but still too few of them are realized in practice. Although such systems can detect 0-day attacks with acceptable false alarm rate, the problem is that they have to be trained with the data, containing labeled attacks. And such data is hard and expensive to produce. This paper offers an adaptive solution based on the immunity mechanisms. The behavior of artificial immune system we proposed deploys the defense strategy of the human immunity. We show experimental results which demonstrate the efficiency of the artificial immune system technology.

Download PDF

Keywords Intrusion detection system; artificial immune systems; adaptive systems.
References 1. Яремчук С. Иммунная система для компьютера // Системный администратор. – 2004. – № 11. – C. 48-51.
2. Kim J., Bentley P. An Artificial Immune Model for Network Intrusion Detection. Интернет ресурс, режим доступа: http://neuro.bstu.by/our/immune3.pdf, дата доступа: 5 октября 2011 г.
3. Tarakanov A.O. Immunocomputing for Intelligent Intrusion Detection. IEEE Computational Intelligence Magazine. – 2008. – C. 23-30.
4. Forrest S., Perelson A.S., Allen L., Cherukuri R. Self-nonself discrimination in a computer, Proc. of 1994 IEEE Symposium on Research in Security and Privacy, 1994. – C. 202-212.
5. De Castro L., Fon Zuben F. Learning And Optimisation Using Clonal Selection Principle IEEE Transactions on Evolutionary Computation, Special Issue On Artificial Immune Systems, 2002. – № 6. – C. 239-251.
6. Stolfo S.J., Fan W., Lee W., Prodromidis A., Chan Ph. K. Cost-based Modeling and Evaluation for Data Mining With Application to Fraud and Intrusion Detection: Results from the JAM Project, Интернет ресурс, режим доступа: weifan.info/PAPERS/JAM99.pdf, дата доступа: 5 октября 2011 г.
7. MIT Lincoln Laboratory Cyber Systems & Technology: DARPA Intrusion Detection. Интернет ресурс, режим доступа: http://www.ll.mit.edu/mission/communications/ist/CST/, дата доступа: 5 октября 2011 г.

Comments are closed.