Article

Article title CHARACTERISTICS OF METHODS OF FUZZY CLUSTERING DATA
Authors A.V. Egorov, N.I. Kuprianova
Section SECTION III. INFORMATION TECHNOLOGIES IN MANAGEMENT
Month, Year 11, 2011 @en
Index UDC 519.23
DOI
Abstract The basic concepts of clustering and fuzzy clustering. The possible types of data suitable for clustering. Given input for clustering algorithms. Briefly analyzed the existing data clustering algorithms, their advantages and disadvantages. Described the most promising mining fuzzy clustering algorithm. Identified prospects of algorithms for clustering, as part of the mathematical tools to support intelligent information systems.

Download PDF

Keywords Clustering; fuzzy clusterin; mountain clustering algorithm.
References 1. Babuska R. Fuzzy Modeling for Control.-Boston: Kluwer Academic Publishers, 1998.
2. Gustafson D.E., Kessel W.C. Fuzzy Clustering with a Fuzzy Covariance Matrix. San-Diego, USA, 1979. – Р. 761-766.
3. Xei X.L., Beni G.A. Validity Measure for Fuzzy Clustering // IEEE Transaction on Pattern Analysis and Machine Intelligent. – 1991. – 3 (8). – P. 841-846.
4. Yager R., Filev D. Essentials of Fuzzy Modeling and Control. USA: John Wiley & Sons, 1984. – Р. 387.
5. Чубукова И.А. Data Mining. – М.: Интернет-Университет информационных технологий; БИНОМ. Лаборатория знаний, 2006.

Comments are closed.