Article

Article title MONITORING AND FORECASTING OF HYDROSPHERE CONDITION WITH NON-LINEAR ANALYSIS OF THE DISTORTION’S EVOLUTION OF ACOUSTIC SIGNALS IN-SITU
Authors I.B. Starchenko
Section SECTION I. METHODS AND MEANS OF ECOLOGICAL MONITORING OF WATER AREAS
Month, Year 09, 2011 @en
Index UDC 534.222
DOI
Abstract This article deals with methods of nonlinear chaotic dynamics of complex systems applied to sonar signals emitted into the real marine environment, passed in it certain distance and has undergone a number of distortions of shape, spectral composition, etc. Such invariants of nonlinear dynamics as phase portrait (attractor), the maximum Lyapunov exponent, recurrence plots, correlation dimension, embedded dimension were defined. Additional calculations of the function of mutual information and false nearest neighbors were performed. It is shown that in the given case, the medium of propagation adds two degrees of freedom to the initial signal that must be considered when designing processing devices.

Download PDF

Keywords Signal distortion; degree of freedom; chaotic system.
References 1. Гостев В.С., Есипов И.Б., Попов О.Е., Воронин В.А., Тарасов С.П. Дисперсия сигнала параметрической антенны в мелком море// Нелинейные акустические системы. Сборник статей, май, 2008. – Ростов-на-Дону: ЗАО «Ростиздат», 2008. – С. 27-37.
2. Maсй R. On the dimension of the compact invariant sets of certain nonlinear maps. In Dynamical Systems and Turbulence / Edited by D. A. Rand and L.-S. Young. – Berlin: Springer, 1981. – P. 230-242.
3. Takens F. Detecting strange attractors in turbulence / In Dynamical Systems and Turbulence, edited by D.A. Rand and L.-S. Young. – Berlin: Springer, 1981. – Р. 366-381.
4. Packard N.H., Crutchfield J.P., Farmer J.D., Shaw R.S. Geometry from a time series // Phys. Rev. Lett., 1980. № 45 (9). – Р. 712-716.
5. Shannon C.E., Weaver W. The Mathematical Theory of Communication. – Urbana: Univ. Illinois, 1949.
6. Fraser A.M., Swinney H.L. Independent coordinates for strange attractors from mutual information // Phys. Rev., 1986. A 33. – Р. 11-34.
7. Kennel M.B., Brown R., Abarbanel H.D.I. Determining embedding dimension for phase-space reconstruction using a geometrical construction // Phys. Rev. – 1992. A 45.– Р. 3403.
8. Abarbanel H.D.I., Kennel M.B. Local False Nearest Neighbors and Dynamical Dimensions from Observed Chaotic Data // Phys. Rev., 1993. – E 47. – Р. 3057–3068.
9. Ruelle D. Proc. R. Soc. London Ser., 1990. A 427. – №24.
10. Grassberger P., Procaccia I. Measuring the Strangeness of Strange Attractors // Physica, 1983. D 9. – Р. 189.
11. Кузнецов С.П. Динамический хаос (курс лекций). – М.: Изд-во физико-математической литературы, 2001. – 296 с.
12. Abarbanel H.D.I., Brown R., Kennel M. Variation of Lyapunov Exponents on a Strange Attractor // J. Nonlinear Sci. – 1991. – № 1. – Р. 175-199.

Comments are closed.