Article

Article title MATHEMATICAL MODELLING OF DEFORMATION OF THE BAR
Authors A.E. Chistyakov, E.A. Kostyrko
Section SECTION II. METHODS OF CONSTRUCTION OF DISCRETE MATHEMATICAL MODELS
Month, Year 08, 2011 @en
Index UDC 519.6
DOI
Abstract This work deals with the development and study of algorithms for solving problems of elasticity theory that is an actual problem of mathematical physics. Euler"s theory about beam is used for the description of elastic properties of a beam. The problem dared in two ways: the decomposition method on Fourier series had been received the analytical decision of a problem; the numerical decision is received with the help finite-difference approximations. Analytical research of the proposed discrete model was completed in this work. Quantitative coincidence of results of numerical and analytical calculations of deformation of a beam is received in case of stationary pressure on time (the distributed loading).

Download PDF

Keywords The equation of a beam of Euler; Fourier series; the balance method; a numerical experiment.
References 1. Владимиров В.С. Уравнения математической физики. – М.: Наука, 1988. – 512 с.
2. Кошляков Н.С., Глинер Э.Б., Смирнов М.М. Дифференциальные уравнения математической физики. – М.: Физматлит, 1962. – 767 с.
3. Самарский А.А. Численные методы: Учеб. пособие для вузов / А.А. Самарский, А.В. Гулин. – М.: Наука, 1989. – 432 с.
4. Самарский А.А. Введение в численные методы: Учебное пособие для вузов по специальности «Прикладная математика». – М. : Наука, 1987. – 286 с.
5. Самарский А.А. Теория разностных схем. – М. : Наука, 1983.
6. Тихонов А.Н., Самарский А.А. Уравнения математической физики. – М.: Наука, 1977. – 735 с.

Comments are closed.