Article

Article title APPROACH OF MAXIMUM FLOW DETERMINING FOR FUZZY TRANSPORTATION NETWORK
Authors A.V. Bozhenyuk, I.N. Rosenberg, E.M. Rogushina
Section SECTION II. MATHEMATICAL MODELS AND METHODS
Month, Year 05, 2011 @en
Index UDC 681.327
DOI
Abstract This article describes a method for finding maximum flow in a transportation network with triangular fuzzy values of arc capacities. This problem is relevant due to its wide practical importance. A method for determining triangular fuzzy numbers as linear combinations of the left and right borders of the basic values is used. The effectiveness of the proposed method lies in the fact that the rules of operating with fuzzy triangular numbers are simplified and the expert can assess the arc capacities by the term "near". To illustrate the proposed method a numerical example is presented.

Download PDF

Keywords Maximum flow; fuzzy arc capacity; linear combination of borders; fuzzy triangular number.
References 1. Форд Л.Р., Фалкерсон Д.Р. Потоки в сетях. – М.: Мир, 1966. – 276 с.
2. Кристофидес Н. Теория графов. Алгоритмический подход. – М.: Мир, 1978. – 432 с.
3. Филипс Д., Гарсиа-Диас А. Методы анализа сетей. – М.: Мир, 1984. – 276 с.
4. Майника Э. Алгоритмы оптимизации на сетях и графах.– М.: Мир, 1981. – 323 с.
5. Chanas S., Kolodziejczyk W. Maximum flow in a network with fuzzy arc capacities // Fuzzy Sets and Systems. – 1982. – № 8. – P. 165-173.
6. Боженюк А.В., Розенберг И.Н., Старостина Т.А. Анализ и исследование потоков и живучести в транспортных сетях. – М.: Научный мир, 2006.
7. Kumar, A, Kaur, M.: A Fuzzy Linear Programming Approach to Solve Fuzzy Max- imal Flow Problems // International Journal of Physical and Mathematical Sciences. – 2010. – Vol. 1, 1. – P. 6-12.
8. Малышев Н.Г., Берштейн Л.С., Боженюк А.В. Нечеткие модели для экспертных систем в САПР. – М.: Энергоатомиздат, 1991.

Comments are closed.