Article

Article title RESEARCH OF ALGORITHMS OF TRAINING OF NEURAL INDISTINCT SYSTEMS FOR MANAGEMENT PROBLEMS
Authors S.E. Bubley
Section SECTION VI. COMPUTER COMPLEXES OF NEW GENERATION AND NEUROCOMPUTERS
Month, Year 12, 2010 @en
Index UDC 519.7
DOI
Abstract Algorithms training of neural systems in the conditions of absence of the aprioristic information are considered. Schemes of algorithms are resulted. Conditions of their application and existing lacks are defined. Genetic algorithms are considered. Definitions of operators of genetic algorithms are resulted. The genetic algorithm for training of an adaptive automatic control system is offered.

Download PDF

Keywords Training; genetic algorithms.
References 1. Gang L., Thomas M. Design for self-organizing fuzzy neural networks based on genetic algorithms // IEEE Transactions on fuzzy systems. – 2006. – Vol. 14, №. 6. – P. 755-776.
2. Рутковская Д., Пилиньский М., Рутковский Л. Нейронные сети, генетические алгоритмы и нечеткие системы / Пер. с польск. И.Д. Рудинского. – М.: Горячая линия – Телеком, 2004. – С. 452.
3. Ridwan M. A parallel genetic algorithm-based tsk-fuzzy system for dynamic car-following modeling // European Journal of Scientific Research. – 2009. – № 4. – P. 627-641.
4. Роббинс М. A stochastic approximation Method // Annals of Math.Statistics, 1951. – С. 223.
5. Gayadhar P., Sidhartha P., Ardil C. Hybrid Neuro Fuzzy Approach for Automatic Generation Control of Two-Area Interconnected Power System. International Journal of Computational Intelligence 5:1. 2009.
6. Gayadhar P., Sidhartha P., Ardil C. Hybrid Neuro Fuzzy Approach for Automatic Generation Control of Two-Area Interconnected Power System // International Journal of Computational Intelligence 5:1. – 2009.
7. Petru R., Emil M. Behavior-Based Neuro-Fuzzy Controller for Mobile Robot Navigation // IEEE Transactions on instrumentation and measurement. – 2003. – Vol. 52, № 4.
8. Ranadhir G.A Novel Hybrid Learning Algorithm for Artificial Neural Networks // School of Information Technology. – 2002. – P. 214.
9. Leu Y., Wei Y., Hsum L. RGA-based on-line tuning of BMF fuzzy-neural networks for adaptive control of uncertain nonlinear systems // Neurocomputing. – 2009. – № 72. – P. 2636-2642.
10. Stefan S. Optimizing a production process by a neural network/genetic algorithm approsh // Egngn Applic. Artif. Intell. – Vol. 9, № 6. – P. 681-689.
11. Ярушкина Н.Г. Основы теории нечетких и гибридных систем: Учеб. пособие. – М.: Финансы и статистика, 2004. – С. 320.
12. Финаев В.И., Молчанов А.Ю. Метод моделирования самонастраивающихся систем управления // Известия ТРТУ. – 2004. – № 8 (43). – С. 45-49.
13. Курейчик В.М. Модифицированные генетически операторы // Известия ЮФУ. Технические науки. – 2009. – № 12 (101). – С. 7-15.
14. Курейчик В.В., Курейчик В.М., Родзин С.И. Концепция эволюционных вычислений, инспирированных природными системами // Известия ЮФУ. Технические науки. – 2009. – № 4 (93). – C. 16-24.

Comments are closed.