Article

Article title ALGORITHM OF MAKING DESIGN DECISIONS BASED ON FUZZY COMMANDS
Authors Yu.O. Chernyshev, N.N. Ventsov, P.A. Panasenko
Section SECTION III. ARTIFICIAL INTELLECT AND INDISTINCT SYSTEMS
Month, Year 07, 2014 @en
Index UDC 681.3
DOI
Abstract The paper describes the process of formulating fuzzy based command enumeration and analytical representation of membership functions. Fuzzy command can be formulated as on the basis of one, and on the basis of two partially contradictory conditions specified by the membership function. Based on fuzzy teams developed the algorithm of search of design decisions. Assignment degree of compliance, listing tuples allows you to plot the membership functions of arbitrary shape, but in this case the required memory resources will increase in proportion to the frequency of sampling. The use of analytical way to set membership function numbers approximately close to x, due to the change of the parameter q, gives the opportunity to get graphics symmetric with respect to x. Analytical record of the membership function allows to minimize dependence on the sampling frequency domain. As a way of algorithm stopping is proposed to use the machine adaptation. Depth change memory of the machine adaptation allows you to adjust the inertia of the process of finding the optimal solution. The use of fuzzy teams to quickly manage the computing process, the use of machines adaptation allows you to adjust the results obtained.

Download PDF

Keywords Fuzzy data; adaptation; decision making; intelligent systems; optimization.
References 1. Kureychik V.M., Lebedev B.K., Lebedev O.B. Poiskovaya adaptatsiya: teoriya i praktika [Search adaptation: theory and practice]. Moscow: Fizmatlit, 2006, 272 p.
2. Chambers Ed.L. Practical Handbook of Genetik Algoritms. Washington. USA, CRC Press, 1999.
3. Holland John H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Application to Biology, Control, and Artificial Intelligence. USA: University of Michigan, 1975.
4. Donath W.E. et al. Timing Driven Placement Using Complete Path Delays Proc. ACM, IEEE DAC, 2008.
5. Kureychik V.M. Bioinspirovannyy poisk s ispolzovaniem stsenarnogo podkhoda [Biospherology search using a scenario approach], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2010, No. 7 (108), pp. 7-12.
6. Cong J., Fang J., Xie M. and Zhang Y. MARS–A multilevel full-chip gridless routing system, IEEE Trans Comput.-Aided Design Integr. Syst, 2005, Vol. 24, No. 3, pp. 382-394.
7. Chernyshev Yu.O., Ventsov N.N., Mukhtarov S.A. Razrabotka algoritma intellektualnoy podderzhki uluchsheniya promezhutochnykh resheniy optimizatsionnykh zadach [Development of algorithm of intellectual support improvements intermediate solutions of optimization problems], Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta [Vestnik of Don State Technical University], 2012, No. 5 (66), pp. 68-76.
8. Chernyshev Yu.O., Ventsov N.N., Mukhtarov S.A. K voprosu ob intellektualnoy podderzhke protsessa dovodki SBIS [To the question of intellectual support of the process of VLSI], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No. 7 (132), pp. 63-69.
9. Walter Banks, Gordon Hayward. Fuzzy logic in embedded microcomputers and control systems. Published by Byte Craft Limited, Waterloo Ontario Canada, 2001.
10. Malyshev N.G., Bershteyn L.S., Bozhenyuk A.V. Nechetkie modeli dlya ekspertnykh sistem v SAPR [Fuzzy logic expert system to CAD]. Moscow: Ehnergoatomizdat, 1991, 136 p.
11. Borisov A.N., Alekseev A.V., Krumberg O.A. i dr. Modeli prinyatiya resheniy na osnove lingvisticheskoy peremennoy [Model of decision making on the basis of linguistic variable]. Riga: Zinatne, 1982, 256 p.
12. Ventsov N.N. Razrabotka algoritma upravleniya protsessom adaptacii nechetkikh proektnykh metadannykh [Development of the algorithm of adaptive management fuzzy project metadata], Inzhenernyy vestnik Dona [Engineering Bulletin Don], 2012, Vol. 19, No. 1, pp. 76-80.
13. Kennedy J. The Particle Swarm: Social Adaptation of Knowledge, In Proceedings of the IEEE International Conference on Evolutionary Computation, 1997, pp. 303-308.
14. Chernyshev Yu.O., Ventsov N.N. Primenenie avtomata adaptatsii pri razrabotke adaptivnogo algoritma optimizatsii dostupa k dannym [The use of automatic adaptation in the development of adaptive algorithm for optimizing data access], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2010, No. 7 (108), pp. 113-119.
15. Zade L.A. Ponyatie lingvisticheskoy peremennoy i ego primenenie k prinyatiyu priblizhennykh resheniy [The concept of a linguistic variable and its application to the adoption of approximate solutions]. Moscow: Mir, 1976, 165 p.
16. Prikladnye nechetkie sistemy [Application of fuzzy systems]: Per. s yapon. K. Asai, D. Vatada, S. Ivai i dr. Pod redaktsiey T. Tehrano, K. Asai, M. Sugehno. Moscow: Mir, 1993, 386 p.
17. Kureychik V.M. Osobennosti postroeniya sistem podderzhki prinyatiya resheniy [Features of construction of systems of support of decision making], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No. 7 (132), pp. 92-98.
18. Artificial Immune Systems and Their Applications. Editor by D. Dasgupta. Springer-Verlag, 1999, 306 p. (Russ. ed.: Romanyukha A.A. Iskusstvennye immunnye sistemy i ikh primenenie, Moscow: Fizmatlit, 2006, 344 p.).
19. Kofman A. Vvedenie v teoriyu nechetkikh mnozhestv [Introduction to the theory of fuzzy sets]: Per. s franc. Moscow: Radio i svyazj, 1982, 432 p.
20. Zade L.A. Fuzzy sets, Information and Control, 1965, Vol. 8, pp. 338

Comments are closed.