Article

Article title FEATURES AND NEW APPROACHES TO THE DECISION OF DYNAMIC VEHICLE ROUTING PROBLEMS WITH TIME WINDOWS
Authors L.A. Gladkov, N.V. Gladkova
Section SECTION V. MODELLING OF COMPLEX SYSTEMS
Month, Year 07, 2014 @en
Index UDC 658.512.2.011.5
DOI
Abstract In article new approaches to the decision of dynamic vehicle routing problems are considered. The urgency and importance of the decision of a similar sort of problems for increase of efficiency and development of a transport infrastructure of regions is proved. The description of a vehicle routing problems (VRP) in terms of the theory of graphs is resulted. The variant of classification of transport problems is offered. Features of various kinds of transport problems, the basic criteria and in addition entered restrictions are noted. The basic approaches to the decision of various kinds of VRP are is short stated. The special attention the description of dynamic vehicle routing problems with time windows is given. Basic elements of such problems are listed. Functions of an estimation of a dynamic component at the decision of vehicle routing problems with time windows are entered. Statement of vehicle routing problems with time windows is formulated and its mathematical model is constructed. On the basis of the spent analysis it is established, that such problems belong to the class of NP-challenges and for their effective decision working out of the new methods, based on use various heuristics is necessary. New approaches to the decision of similar problems on the basis of hybrid intellectual models and evolutionary methods are offered.

Download PDF

Keywords Vehicle routing problems; dynamic vehicle routing problem with time windows; evolutionary calculations; hybrid intellectual methods.
References 1. Filin E.A., Dupas R. Marshrutizatsiya avtotransporta (VRP – Vehicle routing problem) [Routing of vehicles. (VRP – Vehicle routing problem)]. Sarov: SarFTI, 2003.
2. Gladkov L.A., Gladkova N.V. Reshenie dinamicheskikh transportnykh zadach na osnove gibridnykh intellektualnykh metodov i modeley [The dynamic solution of transport problems on the basis of hybrid intelligent methods and models], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 7 (144), pp. 102-107.
3. Kazharov A.A., Kureychik V.M. Bioinspirirovannye algoritmy. Reshenie optimizatsionnykh zadach: Monografiya [Bioinspiration algorithms. The solution of optimization problems: Monograph]. Saarbrucken: LAP LAMBERT Academic Publishing GmbH & Co. KG, 2011.
4. Kazharov A.A., Kureychik V.M. Klassifikatsiya i kriterii optimizatsii zadachi marshrutizatsii avtotransporta [Classification and criteria of optimization tasks routing of vehicles], Sbornik trudov VII Mezhdunarodnoy nauchno-prakticheskoy konferentsii "Integrirovannye modeli i myagkie vychisleniya v iskusstvennom intellekte" [Proceedings of the VII International scientific-practical conference "Integrated models and soft computing in artificial intelligence"], Vol. 2. Mosow: Fizmatlit, 2013, pp. 879-886.
5. Emelyanova T.S. Evristicheskie i metaevristicheskie metody resheniya dinamicheskoy transportnoy zadachi [Heuristic and metaheuristics methods for solving dynamic transport problem], Perspektivnye informatsionnye tekhnologii i intellektualnye sistemy [Information Technologies and Intelligent Systems], 2007, No. 3 (31), pp. 33-43.
6. Emelyanova T.S. Analiz metodov resheniya nelineynykh transportnykh zadach [Analysis of methods for solving nonlinear transport problems], Perspektivnye informatsionnye tekhnologii i intellektualnye sistemy [Information Technologies and Intelligent Systems], 2007, No. 1 (29), pp. 38-49.
7. Emelyanova T.S. Geneticheskiy algoritm resheniya transportnoy zadachi s ogranicheniem po vremeni [Genetic algorithm for solving the transportation problem with a time limit], Perspektivnye informatsionnye tekhnologii i intellektualnye sistemy [Information Technologies and Intelligent Systems], 2007, No. 4 (32), pp. 43-59.
8. Kureychik V.M., Emelyanova T.S. Reshenie transportnykh zadach s ispolzovaniem kombinirovannogo geneticheskogo algoritma [The solution of transport problems using the combined genetic algorithm], Odinnadtsataya nacionalnaya konferentsiya po iskusstvennomu intellektu s mezhdunarodnyhm uchastiem KII-2008. Trudy konferentsii [The eleventh national conference on artificial intelligence with international participation CAI-2008. The conference
proceedings], Vol. 1. Moscow: Fizmatlit, 2008, pp. 158-164.
9. Gladkov L.A., Kureychik V.M., Kureychik V.V., Sorokoletov P.V. Bioinspirirovannye metody v optimizatsii [Bioinspiration methods in optimization]. Moscow: Fizmatlit, 2009, 384 p.
10. Gladkov L.A. Reshenie zadach i optimizatsii resheniy na osnove nechetkikh geneticheskikh algoritmov i mnogoagentnykh podkhodov [Problem solving and optimization solutions based on fuzzy genetic algorithms and multi-agent approaches], Izvestiya TRTU [Izvestiya TSURE], 2006, No. 8 (63), pp. 83-88
11. Gladkov L.A., Kureychik V.V., Kureychik V.M., Rodzin S.I. Osnovy teorii evolyutsionnykh vychisleniy: Monografiya [Fundamentals of the theory of evolutionary computation: Monograph]. Rostov-on-Don: Izd-vo YuFU, 2010.
12. Gladkov L.A. Osobennosti razrabotki i nastroyki nechetkogo logicheskogo kontrollera [Features of the development and tuning of fuzzy logic controller], Intellektualnye sistemy. Kollektivnaya monografiya [Intelligent systems. Collective monograph]. Issue 6. Rostov-on-Don: Izd-vo YuFU, 2013, pp. 262-279.
13. Gladkov L.A., Gladkova N.V. Osobennosti ispolzovaniya nechetkikh geneticheskikh algoritmov dlya resheniya zadach optimizatsii i upravleniya [Features of the use of fuzzy genetic algorithms for solving problems of optimization and management], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2009, No. 4 (93), pp. 130-136.
14. Kureychik V.M., Kazharov A.A. Muravinye algoritmy dlya resheniya transportnykh zadach [Ant algorithms for the solution of transport problems], Izvestiya RAN. Teoriya i sistemy upravleniya [Izvestiya of the Russian Academy of Sciences. Theory and control system], 2010, No. 1, pp. 32-45.
15. Kureychik V.M., Kazharov A.A. Ispolzovanie roevogo intellekta v reshenii NP-trudnykh zadach [Using swarm intelligence in solving NP-hard problems], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 7 (120), pp. 30-36.

Comments are closed.