Article

Article title PLANNING VLSI ON THE BASIS OF THE ANT COLONY METHOD
Authors O.B. Lebedev
Section SECTION I. EVOLUTIONARY MODELLING, GENETIC AND BIONIC ALGORITHMS
Month, Year 07, 2010 @en
Index UDC 681.3.001.63
DOI
Abstract New technologies, principles and mechanisms of the planning VLSI decision using mathematical methods in which principles of natural mechanisms of decision-making are put in pawn are offered. For compact representation of the slicing floorplan a modification Polish expression is used. It has allowed to create the space of decisions in which frameworks the search process which is based on modeling of adaptive behaviour of ant colony is organized. In comparison with existing algorithms improvement of results is reached.

Download PDF

Keywords Planning VLSI; ant colony; optimization.
References 1. Kahng A.B. “Classical Floorplanning Harmful”, ISPD 2000. – Р. 207-213.
2. J. Cong en all. “Microarhitecture Evolution With Physical Planning”, DAC, 2003. – Р. 32-35.
3. N. Adya et all. “Unification of Partioning, Plasement and Floorplanning”. DAC, 2004. – Р. 550-557.
4. Liu H. Chen T. Chou A. Aziz D.F. Wong. “Integrated Power Supply Planning and Floorplanning”, IEEE Tranc.on CAD, 2004.
5. Cheng L., D.F. Wong. “Floorplan Design For Multi-million Gate FPGAs”, DAC, 2004. – Р. 292-313.
6. Лебедев В. Б. Планирование СБИС методом адаптивного поиска // Известия ТРТУ. – 2000. – № 2 (16). – С. 168-177.
7. Курейчик В.М., Лебедев Б.К., Лебедев О.Б. Поисковая адаптация: теория и практика. – М.: Физматлит, 2006.
8. Лебедев Б.К. Методы поисковой адаптации в задачах автоматизированного проектирования СБИС: Монография. – Таганрог: Изд-во ТРТУ, 2000.
9. Курейчик В.М. Модифицированные генетические операторы // Известия ЮФУ. Технические науки. – 2009. – № 12 (101). – С. 7-15.
10. МакКоннелл Дж. Основы современных алгоритмов. – М.: Техносфера, 2004.
11. Di Caro G., Ducatelle F., Gambardella L.M. AntHocNet: An adaptive nature inspired algorithm for routing in mobile ad hoc networks // European Transactions on Telecommunications. – 2005. – № 16(5). – Р. 443-455.
12. Engelbrecht P. Fundamentals of Computational Swarm Intelligence. John Wiley & Sons, Chichester, UK, 2005.
13. Курейчик В.В., Полупанова Е.Е. Эволюционная оптимизация на основе алгоритма колонии пчел // Известия ЮФУ. Технические науки. – 2009. – № 12. – С. 41-46.
14. Dorigo M. and Stьtzle T. Ant Colony Optimization. MIT Press, Cambridge, MA, 2004.

Comments are closed.