Article

Article title APPLICATION OF IMMUNE SYSTEMS TO CORPORATE INFORMATION PROTECTION FROM MISUSE
Authors A.V. Gavrilov, A.V. Tikhomirov
Section SECTION IV. NEW INFORMATION TECHNOLOGIES
Month, Year 07, 2010 @en
Index UDC 621.391
DOI
Abstract This paper deals with using the immune approach for the critical information leak risk reduction problem solving. We focused on information leaks related to the illegal data access by organization employees (insider attacks). The analysis of reports on corporate information leaks reveals that existing industrial security systems are inefficient against the threats discussed in this paper. We suggest using dynamic approach based on the behavioral stuff operations analysis involving the immune networks method to solve the problem discussed. Immune networks are highly parallel structures for data processing, which implement the learning, memory and associative data mining mechanisms to carry out the tasks of recognition and classification. The proposed approach allows us to detect the attacks which could not be recognized by traditional signature-based methods.

Download PDF

Keywords Insider; immune systems; corporate information leak.
References 1. Дасгупта Д. Искусственные иммунные системы и их применение / Пер. с англ. под ред. А.А. Романюхи. – М.: ФИЗМАТЛИТ, 2006. – 344 с.
2. Dasgupta D. and others Artificial Immune System Research in the Last Five Years. The University of Memphis, Memphis, TN. 38152, 2003.
3. Литвиненко В.И. и др. Гибридная иммунная сеть для решения задач структурной идентификации // Научная сессия МИФИ - 2005. Сборник научных трудов. – М.: МИФИ, 2005. – Ч.2: VII Всероссийская научно-техническая конференция "Нейроинформатика-2005". – С. 143-155.
4. Jerne N.K. Towards a Network Theory of the Immune System // Ann. Immunol. (Inst. Pasteur), 1974. – 125 с.
5. D'haeseleer P. An Immunological Approach to Change Detection: Theoretical Results. In Proceedings of the 9th IEEE Computer Security Foundations Workshop. IEEE Computer Society Press, 1996.
6. Forrest S., Perelson A. and others A Change-Detection Algorithm Inspired by the Immune System. Submitted to IEEE Transactions on Software Engineering, IEEE Computer Society Press, 1995.
7. Чубукова И.А. Data Mining: учебное пособие – 2-ое издание. исправ. – М.: Интернет-Университет Информационных Технологий; БИНОМ. Лаборатория знаний, 2008. – 382 с.
8. Open Security Foundation's DataLossDB, 2005. – http://datalossdb.org
9. Katheleen A. Jackson Intrusion detection system (СОВ). Los Alamos, New Mexico USA. 1999. – 106 c.

Comments are closed.