Article

Article title SWARM OPTIMIZATION ALGORITHM IN THE MULTISPECTRAL IMAGES CLUSTERING TASK
Authors E.A. Vershovsky
Section SECTION II. ALGORITHMIC AND SOFTWARE
Month, Year 05, 2010 @en
Index UDC 004.932.2
DOI
Abstract The article contains an algorithm for clustering multispectral images based on swarm particle optimization. The urgency of the work associated with the relevance of developments in the field of swarm intelligence and urgent task of deciphering multispectral satellite images.

Download PDF

Keywords Particle swarm optimization; multispectral image clustering; K-means; ISODATA.
References 1. Scheunders P. A Genetic C-Means Clustering Algorithm Applied to Image Quantization, Pattern Recognition, 30(6), 1997.
2. A Comparison of Clustering Algorithms Applied to Color Image Quantization / Scheunders P., Pattern Recognition Letters, Vol 18, 1997. – P. 1379-1384.
3. Unsupervised Robust Change Detection on Multispectral Imagery Using Spectral and Spatial Features /Wiemker R., Speck A., Kulbach D., Proceedings of the Third International Airborne Remote Sensing Conference and Exhibition, Copenhagen, Denmark. – 1997. – Vol. 1. – Р. 640-647.
4. Data Mining and Knowledge Discovery in Complex Image Data using Artificial Neural Networks /Evangelou I.E., Hadjimitsis D.G.,Workshop on Complex Reasoning on Geographical Data, Cyprus, 2001.
5. Remote Sensing and Image Interpretation / Lillesand T., Kiefer R., John Wiley & Sons Publishing, 1994.
6. A Viable End-Member Selection Scheme for Spectral Unmixing of Multispectral Satellite Imagery Data / Saghri J., Tescher A., Omran M., Journal of Imaging Science and Technology. – 2000. – 44 (3). – P. – 196-203.
7. Particle Swarm Optimization / Kennedy J., Eberhart R.C., Proceedings of the IEEE International Conference on Neural Networks, Vol 4, Perth, Australia. – 1995. – Р. 1942-1948.
8. Small Worlds and Mega-Minds: Effects of Neighborhood Topology on Particle Swarm Performance / Kennedy J., Proceedings of the Congress on Evolutionary Computation. – 1999. – Р. 1931-1938.
9. An Analysis of Particle Swarm Optimizers / Bergh F., PhD Thesis, University of Pretoria, South Africa, 2002.
10. Classification Methods for Remotely Sensed Data / Tso B., P. M. Mather Taylor & Francis Group, 2009.
11. Study of Different Approach to Clustering Data by Using the Particle Swarm Optimization Algorithm /Esmin A., Pereira D., Araujo F., IEEE Congress on Evolutionary Computation, 2008.

Comments are closed.