Authors S.V. Balakirev, Y.F. Blinov, M.S. Solodovnik
Month, Year 09, 2014 @en
Index UDC 621.793.14
Abstract A kinetic model homoepitaxialGaAs growth is presented by molecular-beam epitaxy (MBE) at a nascent stage and the independent growth of islands forming a monolayer (ML). The feature of the model is in accounting and quantifying the impact of flow ratio of arsenic and gallium on the characteristics of two-dimensional islands of GaAs. It is shown that at a temperature of 580 °C, the growth rate of 0,05 ML/s and an increase in flow ratio V/III from 5 to 30, the surface density of the islands increases from 3x1010 to 1,8x1011 cm-2. The average size of the islands is reduced from 37 to 15 nm. However, at lower rates growth the differencein the sizes becomes even more significant. It is shown that increasing the ratio between the fluxes reduces the scatter island array size. The obtained results can be used to optimize the technological regimes of epitaxial growth nanoheterostructures AIIIBV.

Download PDF

Keywords Nanotechnology; nanostructures; nanomaterials; semiconductors; molecular beam epitaxy; gallium arsenide; V/III flux ratio; kinetic modeling.
References 1. Cheng L., Ploog K. Molekulyarno-luchevaya epitaksiya i geterostruktury [Molecular beam epitaxy and heterostructures]. Moscow: Mir, 1989, 582 p.
2. Ageev O.A., Kolomiytsev A.S., Mikhaylichenko A.V., Smirnov V.A., Ptashnik V.V., Solodovnik M.S., Fedotov A.A., Zamburg E.G., Klimin V.S., Il'in O.I., Gromov A.L., Rukomoykin A.V. Poluchenie nanorazmernykh struktur na osnove nanotekhnologicheskogo kompleksa NANOFAB NTK-9 [Nanoscale structures’ production based on modular nanotechnologycal platform NANOFAB], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 1 (117), pp. 109-116.
3. Ageev O.A., Varzarev Yu.N., Solodovnik M.S., Rukomoykin A.V. Poluchenie i issledovanie HEMT-struktur na osnove GaAs dlya SVCh-polevykh tranzistorov na nanotekhnologicheskom komplekse NANOFAB NTK-9 [Obtaining and investigation of hemt-structure based on gaas for ultra high frequency field effect transistors at nanotechnological system NANOFAB NTF-9], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 4 (117), pp. 13-21.
4. Ageev O.A., Konoplev B.G., Rubashkina M.V., Rukomoykin A.V., Smirnov V.A., Solodovnik M.S. Issledovanie vliyaniya geometricheskikh parametrov na modul' Yunga orientirovannykh
nitevidnykh nanokristallov GaAs metodom atomno-silovoy mikroskopii [Investigation of the influence of geometrical parameters on the young's modulus of the oriented filamentary of GaAs nanocrystals by atomic force microscopy], Rossiyskie nanotekhnologii [Russian Nanotechnology], 2013, No. 1-2, Vol. 8, pp. 20-25.
5. Ageev O.A., Smirnov V.A., Solodovnik M.S., Avilov V.I. Issledovanie rezhimov lokal'nogo anodnogo okisleniya epitaksial'nykh struktur arsenida galliya [The study of the local anodic
oxidation of epitaxial gallium arsenide], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 4 (117), pp. 8-13.
6. Dubrovskiy V.G., Tsyrlin G.E. Kinetika rosta tonkikh plenok pri zarodyshevom mekhanizme formirovaniya sloev [The kinetics of growth of thin films during embryonic formation mechanism of layers], Fizika i tekhnika poluprovodnikov [Semiconductor Physics and Technology],
2005, Vol. 39, No. 11, pp. 1312-1319.
7. Dubrovskiy V.G., Sibirev N.V., Tsyrlin G.E., Ustinov V.M. Teoriya formirovaniya mnogosloynykh tonkikh plenok na poverkhnosti tverdogo tela [The theory of the formation of multilayer thin films on a solid surface], Fizika i tekhnika poluprovodnikov [Semiconductor
Physics and Technology], 2006, Vol. 40, No. 3, pp. 257-263.
8. Kukushkin S.A., Osipov A.V. Protsessy kondensatsii tonkikh plenok [The processes of condensation of thin films], Uspekhi fizicheskikh nauk [Advances in Physical Sciences], 1998, Vol. 168, No. 10, pp. 1083-1116.
9. Joyce B.A., Vvedensky D.D., Bell G.R., Belk J.G., Itoh M., Jones T.S. Nucleation and growth mechanisms during MBE of III-V compounds, Mat. Sci. Eng. B., 1999, Vol. 67, pp. 7-16.
10. LaBella V. P., Bullock D. W., Ding Z., Emery C., Harter W. G., Thibado P. M. Monte Carlo derived diffusion parameters for Ga on the GaAs(001)-(2Ч4) surface: A molecular beam epitaxy–scanning tunneling microscopy study, J. Vac. Sci. Tech. A., 2000, Vol. 18, No. 4, pp. 1526-1531.
11. Ledentsov N.N., Ustinov V.M., Shchukin V.A., Kop'ev P.S., Alferov Zh.I., Bimberg D. Geterostruktury s kvantovymi tochkami: poluchenie, svoystva, lazery [Heterostructures with quantum dots: synthesis, properties, lasers], Fizika i tekhnika poluprovodnikov [Semiconductor Physics and Technology], 1998, Vol. 32, No. 4, pp. 385-410.
12. Ohtake A., Ozeki M. In situ observation of surface processes in InAs/GaAs(001) heteroepitaxy: The role of As on the growth mode, Appl. Phys. Lett., 2001, Vol. 78, pp. 431.
13. Riel B.J., Hinzer K., Moisa S., Fraser J., Finnie P., Piercy P., Fafard S., Wasilewski Z.R. InAs/GaAs(100) self-assembled quantum dots: arsenic pressure and capping effects, J. Cryst. Growth, 2002, Vol. 236, pp. 145-154.
14. Morgan C.G., Kratzer P., Scheffler M. Arsenic Dimer Dynamics during MBE Growth: Theoretical Evidence for a Novel Chemisorption State of As2 Molecules on GaAs Surfaces, Phys. Rev. Lett., 1999, Vol. 82, 24, pp. 4886-4889.
15. Shchukin V., Scholl E., Kratzer P. Thermodynamics and Kinetics of Quantum Dot Growth, Semiconductor Nanostructures / ed. Bimberg D. Berlin: Springer Berlin Heidelberg, 2008.
16. Daweritz L., Ploog K. Contribution of reflection high-energy electron diffraction to nanometre tailoring of surfaces and interfaces by molecular beam epitaxy, Semicond. Sci. Tech., 1994, Vol. 9, No. 2, pp. 123-136.
17. Frenkel J. Theorie der Adsorption und verwandter Ersheinungen, Zeitschrift fьr Physik, 1924, Vol. 26, No. 1, pp. 117-138.
18. Loyko N. Vvedenie v molekulyarno-luchevuyu epitaksiyu [Introduction to molecular beam epitaxy]. Moscow: FIRAN, 1999, 28 p.
19. Dubrovskiy V.G. Teoreticheskie osnovy tekhnologii poluprovodnikovykh priborov [Theoretical bases of technology of semiconductor devices]. St. Petersburg, 2006, 347 p.
20. Dzheykok M., Parfit D. Khimiya poverkhnosti razdela faz [The chemistry of the interface]. Moscow: Mir, 1984, 269 p.
21. Khirs D., Paund G. Isparenie i kondensatsiya [Evaporation and condensation]. Moscow: Metallurgiya, 1966, 288 p.
22. Kashchiev D. Nucleation: Basic Theory with Applications. Oxford: Butterworth Heinemann, 2000, 529 p.
23. Kuni F.M., Grinin A.P. Vremya ustanovleniya statsionarnogo rezhima gomogennoy nukleatsii [The time to establish steady-state homogeneous nucleation], Kolloidnyy zhurnal [Colloid Journal], 1984, Vol. 46, pp. 23.
24. Kuni F. M. The Kinetics of Condensation under the Dynamical Conditions: preprint No. 84-148.E. Kiev: Institute of Theoretical Physics, 1984.
25. Dubrovskiy V.G., Musikhin Yu.G., Tsyrlin G.E., Egorov V.A., Polyakov N.K., Samsonenko Yu.B., Tonkikh A.A., Kryzhanovskaya N.V., Bert N.A., Ustinov V.M. Zavisimost' strukturnykh i opticheskikh svoystv ansambley kvantovykh tochek v sisteme InAs/GaAs ot temperatury
poverkhnosti i skorosti rosta [Dependence of structural and optical properties of ensembles of quantum dots in the system InAs/GaAs surface temperature and growth rate], Fizika i tekhnika poluprovodnikov [Semiconductor physics and technology], 2004, Vol. 38, No. 3, pp. 342-348.
26. Spravochnik po spetsial'nym funktsiyam [Handbook of special functions], Pod red. Abramovits M.A., Stigan I. Moscow: Nauka, 1979.

Comments are closed.