Article

Article title NUMERICAL SOLUTION OF NONSTATIONARY FUNDAMENTAL EQUATION SYSTEM SEMICONDUCTOR IN THE DIFFUSION-DRIFT APPROXIMATION
Authors I.V. Kulikova, I.E. Lysenko, N.K. Pristupchik, A.S. Lysenko
Section SECTION II. NANOMATERIALS
Month, Year 09, 2014 @en
Index UDC 519.63
DOI
Abstract This paper is devoted the numerical modeling the current-voltage and transient characteristics pn junction with the use original software, distinctive features of which are registration of the Courant parameters for the time sampling, and the counterflow circuit. This obtained expression is shown for the calculation step time discretization taking into account the Courant parameter. Application of calculated step time discretization and counterflow circuit allowed us to obtain stable convergent solution at different injection levels of the semiconductor equations in a diffusion-drift approach. The implicit scheme was used for solving the nonstationary equations. Poisson"s equation was solved for each time step. The developed software and obtained results with its aid. The developed software and obtained results with it, namely, the concentration distribution of the charge carriers, volume charge density, and the Fermi level and the electric field at different times, and CVC-structure, may be useful in modeling of semiconductor element base integrated circuits, as well as sensitive elements chemosensor.

Download PDF

Keywords The basic semiconductor equations; Finite volume method; Microsystem technology.
References 1. Obukhov I.A. Neravnovesnye effekty v elektronnykh priborakh [Nonequilibrium effects in electronic devices]. Sevastopol': Izd-vo «Veber», 2010, 303 p.
2. Selberherr S. Analysis and Simulation of Semiconductor Devices. New York: Springer-Verlag/Wien, 1984, 295 p.
3. Marie X., Balkan N. Semiconductor Modeling Techniques, Springer Series in Materials Science, 2012, Vol. 159, 261 p.
4. Ryndin E.A., Len'shin A.S. Metodika chislennogo modelirovaniya spektrometricheskikh gazochuvstvitel'nykh sensornykh sistem [The method of numerical simulation spectrometric gas sensitive sensor systems], Inzhenernyy vestnik Dona [Engineering Journal of Don], 2012, No. 4, Part 2. Available at: http://www.ivdon.ru (accessed 14 August 2014).
5. Konoplev B.G., Ryndin E.A., Denisenko M.A. Metod proektirovaniya funktsional'nointegrirovannykh lazerov-modulyatorov [Design method of functionally-integrated laser-modulators], Inzhenernyy vestnik Dona [Engineering Journal of Don], 2013, No. 3. Available at: http://www.ivdon.ru (accessed 14 August 2014).
6. Tomoko Shimada, Shinji Odanaka. A numerical method for a transient quantum drift-diffusion model arising in semiconductor devices, J Comput Electron, 2008, No. 7, pp. 485-493.
7. Lysenko I.E. Model' ravnovesiya podvizhnykh elementov mikromekhanicheskikh zerkal s vnutrennimi podvesami [Equilibrium model of mobile elements micromechanical mirrors with internal suspensions], Inzhenernyy vestnik Dona [Engineering Journal of Don], 2013, No. 2.
Available at: http://www.ivdon.ru (accessed 14 August 2014).
8. Ryndin E.A., Kulikova I.V. Algoritm fiziko-topologicheskogo modelirovaniya PTSh [The algorithm physical-topological modeling with], Izvestiya TRTU [Izvestiya TSURE], 2000, No. 3 (17), pp. 150-154.
9. Shpak A.A., Kulikova I.V. Metodika rascheta ekvivalentnykh mekhanicheskikh parametrov membran slozhnoy topologii dlya elementov mikrosistemnoy tekhniki [The method of calculating the equivalent mechanical properties of the membranes of complex topology for items Microsystem technology], Inzhenernyy vestnik Dona [Engineering Journal of Don], 2013, No. 2 (25), pp. 41-46.
10. Frayden Dzh. Sovremennye datchiki [Modern sensors]: cpravochnik. Moscow: Tekhnosfera, 2005, 592 p.
11. Zaliznyak K.E. Osnovy vychislitel'noy fiziki [Foundations of computational physics]. Part 1. Vvedenie v konechno-raznostnye metody [Introduction to finite-difference methods]. Moscow: Tekhnosfera, 2008, 224 p.

Comments are closed.