Authors D.A. Kovalenko, V.V. Petrov, V.G. Klindukhov
Month, Year 09, 2014 @en
Index UDC 53.043
Abstract The technology of thin ferroelectric lead zirconate titanate (PTZ) films on the oxygenated silicon- containing wafers using radiofrequency reactive sputtering method is described. Process variables are chamber gas tension, the electrode applied electric power and film formation time. The crystalline quantitative content in PZT films, as well as the process variable effect, is defined involving the X-ray diffraction analysis. The electrode applied electric power contributes significantly to the crystal quantitative content in PZT films. The PZT growth mechanism is studied using the scanning electron microscopy. Thickness growth of ferroelectric PZT films is about 17 nm/min and occurs on theoxidized silicon surface applying Stranski-Krastanov growth mode. Relationships between electrophysical properties and technological formation parameters, as well as relationships between dielectric phase difference value (∆φ) and field frequency polarization value, are elucidated.

Download PDF

Keywords Lead zirconate titanate; ferroelectric materials; high-frequency reactive sputtering; Stranski-Krastanov growth mode; polarization; dielectric phase difference.
References 1. Shi Yan, Jinzhi Fu, Wei Sun, Baohui Qi, Fuxue Liu. PZT-Based Detection of Compactness of Concrete in Concrete Filled Steel Tube Using Time Reversal Method, Mathematical Problems in Engineering, 2014.
2. Ling-Sheng Jang and Kuo-Ching Kuo. Fabrication and Characterization of PZT Thick Films for Sensing and Actuation, Sensors, 2007, No. 7.
3. Vendik O., Parnes M. Fazovrashchateli skaniruyushchikh antenn dlya radarov obzora territoriy [Phasers scanning antennas for radar survey of the territories], Besprovodnye tekhnologii [Wireless Technologies], 2007, No. 3, pp. 26-28.
4. Layns M., Glase A. Segnetoelektriki i rodstvennye im materialy [Ferroelectrics and related materials]. Moscow: Mir, 1998, 736 p.
5. Fel'dman L., Mayer D. Osnovy analiza poverkhnosti tonkikh plenok [Fundamentals of surface analysis of thin films]. Moscow: Mir, 1989, 344 p.
6. Ledentsov N.N., Ustinov V.M., Shchukin V.A., Kop'ev P.S., Alferov Zh.I., Bimberg D. Geterostruktury s kvantovymi tochkami: poluchenie, svoystva, lazery [Heterostructures with quantum dots: synthesis, properties, lasers], Fizika i tekhnika poluprovodnikov [Semiconductor Physics and Technology], 1998, No. 4 (32), pp. 385.
7. Barfut Dzh. Vvedenie v fiziku segnetoelektricheskikh yavleniy [Introduction to the physics of ferroelectric phenomena]. Moscow: Mir, 1970, 352 p.
8. Smolenskiy T.A., Bokov V.A., Kraynik N.N., Pasynkov R.E., Shur M.S. Segnetoelektriki i antisegnetoelektriki [Ferroelectrics and antisenescence]. Moscow: Nauka, 1979, 476 p.
9. Piralova A. T., Aleshin V.A., Mukhortoe EM., Dudkevich V.P., Fesenko E.G. Termodinamicheskaya teoriya segnetoelektrikov titanata bariya [Thermodynamic theory of ferroelectric barium titanate], Kristallografiya [Crystallography], 1986, No. 6 (31), pp. 1175.
10. Mukhortov V.M., Yuzyuk Yu.I. Geterostruktury na osnove nanorazmernykh segnetoelektricheskikh plenok: poluchenie, svoystva i primenenie [Heterostructures based on nanoscale
ferroelectric films: fabrication, properties and application]. Rostov-on-Don: Izd-vo YuNTs RAN, 2008, 224 p.
11. Kovalenko D.A., Petrov V.V. Razrabotka sensorov na osnove segnetoelektricheskikh plenok dlya gibridnykh sensornykh sistem [The development of sensors based on ferroelectric films for hybrid sensor systems], Inzhenernyy vestnik Dona [Engineering journal of Don], 2012, No. 4 (Part 2). (Available at:
12. Kovalenko D.A., Petrov V.V., Klindukhov V.G. Razrabotka datchika dinamicheskikh deformatsiy na osnove segnetoelektricheskikh plenok tsirkonata-titanata svintsa [Development of sensor dynamic deformations based on ferroelectric films of lead zirconate titanate], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 4(153), pp. 184-190.

Comments are closed.