Article

Article title DESIGN AND TECHNOLOGY FEATURES CANTILEVERS FOR ATOMIC FORCE MICROSCOPY
Authors A.V. Bykov
Section SECTION III. NANOSYSTEMS TECHNOLOGY
Month, Year 09, 2014 @en
Index UDC 621.38
DOI
Abstract Many different methods have been developed to study the surface of solids with high spatial, one of which is atomic force microscopy. The analysis of design and technological features of the cantilevers – probes for atomic force microscopy has been carried out. A typical process of cantilever manufacturing has been presented. Various types of beam deflection logon system are considered: optical, capacitor, piezoelectric and pyezorezistivny, contact and tunnel. Their advantages and disadvantages have been highlighted. There were presented Values data design of industrial cantilever with optical system of registration, value of resonant frequencies and coefficient of the console rigidity. The information on the main international suppliers(Nanonics Imaging Ltd (Israel), JSC NT-MDT (Russia), Veeco Probes (USA), BudgetSensors (Bulgaria), Nanosensors (Switzerland), Nano and More GmbH (Germany), Nano World (USA)) has been provided. By results of the carried out analysis, the conclusions on expediency of design optimization for the required cantilever technique of atomic force microscopy have been made.

Download PDF

Keywords Silicon cantilever; bulk micromachining; sensor read-out methods; atomic force microscopy.
References 1. Binnig G., Quate C.F., Gerber Ch. Atomic force microscope, Jpn. Phys. Rev. Lett., 1986. – Vol. 56, No. 9, pp. 930-933.
2. Peter E., Paul W. Atomic Force Microscopy. NY: Oxford University Press, 2010, 256 p.
3. Maslova N.S., Oreshkin A.I., Panov V.I. [et al.]. STM evidence of dimensional quantization on the nanometer size surface defects, Solid State Communications, 1995, Vol. 95, No. 8, pp. 507-510.
4. Butt H.J., Cappella B., Kappl M. Force measurements with the atomic force microscope: Technique, interpretation and applications, J. Surf. Sci. Rep., 2005, Vol. 59, pp. 1-152.
5. Baro A., Reifenberger R. Atomic Force Microscopy in Liquid. Weinheim: Wiley- VCH, 2012, 368 p.
6. Mironov V.L. Osnovy skaniruyushchey zondovoy mikroskopii [Fundamentals of scanning probe microscopy]. Nizhny Novgorod: Institut fiziki mikrostruktur, 2004, pp. 15-68.
7. Konoplev B.G., Ageev O.A., Smirnov V.A. i dr. Modifikatsiya zondovykh datchikov-kantileverov dlya atomno-silovoy mikroskopii metodom fokusirovannykh ionnykh puchkov [Modification of the probe-cantilevers for atomic force microscopy focused ion beams], Nano- i mikrosistemnaya tekhnika [Nano - and Microsystem technology], 2011, No. 4, pp. 4-8.
8. Avilov V.I., Ageev O.A., Kolomiytsev A.S. i dr. Formirovanie i issledovanie matritsy memristorov na osnove oksida titana metodami zondovoy nanotekhnologii [The formation and study of the matrix of memristor-based titanium oxide methods probe nanotechnology],
Izvestiya vysshikh uchebnykh zavedeniy. Elektronika [News of higher educational institutions. Electronics], 2014, No. 2 (106), pp. 50-57.
9. Ageev O.A., Smirnov V.A., Kolomiytsev A.S. Primenenie metoda fokusirovannykh ionnykh puchkov dlya modifikatsii zondovykh datchikov atomno-silovykh mikroskopov [The application of the method of focused ion beams to modify probe atomic force microscopes], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 4 (117), pp. 166-171.
10. Konoplev B.G., Ageev O.A., Smirnov V.A. i dr. Modifikatsiya zondov dlya skaniruyushchey zondovoy mikroskopii metodom fokusirovannykh ionnykh puchkov [Modification of probes for scanning probe microscopy focused ion beams], Mikroelektronika [Microelectronics],
2012, Vol. 41, No. 1, pp. 47-56.
11. Ageev O.A., Mamikonova V.M., Petrov V.V. i dr. Mikroelektronnye preobrazovateli neelektricheskikh velichin [Microelectronic transducers non-electrical quantities]. Taganrog: TRTU, 2000, 153 p.
12. Ageev O.A., Kolomiytsev A.S., Mikhaylichenko A.V. i dr. Poluchenie nanorazmernykh struktur na osnove nanotekhnologicheskogo kompleksa NANOFAB NTK-9 [Obtaining nanoscale structures based on nanotechnology NANOFAB NTC-9], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 1 (114), pp. 109-116.
13. Velichko R.V., Gusev E.Yu., Mikhno A.S., Bychkova A.S. Issledovanie rezhimov plazmokhimicheskogo osazhdeniya plenok nano- i polikristallicheskogo kremniya [The study of the plasma-chemical deposition of films of nano- and polycrystalline silicon], Fundamental'nye issledovaniya [Fundamental Research], 2012, No. 11, pp. 1176-1179.
14. Ageev O.A., Belyaev A.E., Boltovets N.S. i dr. Fazy vnedreniya v tekhnologii poluprovodnikovykh priborov i SBIS [The implementation phase in the technology of semiconductor devices and VLSI]. Khar'kov: NTK «Institut mono-kristallov», 2008, 392 p.
15. Gysev E.Y., Ageev O.A., Gamaleev V.A. et al. Effect of annealing on conductivity type of nanocrystalline ZnO films fabricated by RF magnetron sputtering, Advanced Materials Research, 2014, Vol. 893, pp. 539-542.
16. Boisen A., Dohn S. Cantilever-like micromechanical sensors, Reports on Progress in Physics, 2011, Vol. 74M, No. 3, pp. 30.
17. Bykov V.A. Mikromekhanika dlya skaniruyushchey zandovoy mikroskopii i nanotekhnologii [Micromechanics for scanning Sandoval microscopy and nanotechnology], Mikrosistemnaya tekhnika [Microsystem technology], 2000, No. 1, pp. 21-33.
18. Sillicon Valley Microelectronics Inc. Available at: http://www.svmi.com (access: 24 August 2014).
19. Soitec. Available at: http://www.soitec.com/en/index.php (access: 24 August 2014).
20. Silicon Wafer. Available at: http://www.universitywafers.com (access: 24 August 2014).
21. May G.S., Sze S.M. Photolithography, fundamentals of semiconductor fabrication. New York: Wiley, 2004, 320 p.
22. McCord M.A., Rooks M.J. Electron beam lithography: handbook of microlithography, micromachining, and microfabrication. Bellingham, WA: SPIE Preaa, 1997, Vol. 1, pp. 139-250.
23. Garrou P., Bower C., Ramm P. Handbook of 3D Integration. Weinheim: Wiley, 2008, 798 p.
24. Bagolini A., Pakula L., T.L.M. et al. Polyimide sacrificial layer and novel materials for post-processing surface micromachining, J. Micromech. Microeng, 2002, Vol. 12, pp. 385-389.
25. Geim A.K., Novoselov K.S. The rise of grapheme, Nature Mater, 2007, Vol. 6, pp. 183-191.
26. 80. Robertson J. Diamond-like amorphous carbon, Mater. Sci. Eng. R., 2002, Vol. 37, pp. 129-281.
27. NOVASCAN company. Available at: http://www.novascan.com/ (access 13 August 2014).
28. BUDGETSENSOR company. Available at: http://www.budgetsensors.com/ (access 13 August
2014).
29. NTMDT company. Available at: http://www.ntmdt-tips.com/ (access 14 August 2014).
30. Bruker company. Available at: http://www.brukerafmprobes.com/ (access 14 August 2014).
31. NANOWORLD company. Available at: http://www.nanoworld.com/ (access 14 August 2014).
32. Nanoscience Instruments. Available at: http://www.nanoscience.com/ products/afm/afmprobes/ (access 14 August 2014).
33. Huber F., Hegner M., Gerber C. et al.. Label free analysis of transcription factors using microcantilever arrays, Biosensors &Bioelectronics, 2006, Vol. 21, pp. 1599-1605.
34. Hinterdorfer. P, Dufrкne Y. Detection and localization of single molecular recognition events using atomic force microscopy, Nature methods, 2006, Vol. 3, pp. 347-355.
35. Zinoviev K., Dominguez C., Plaza J.A. et al. A novel optical waveguide microcantilever sensor for the detection of nanomechanical forces, J. Lightwave Technol, 2006, Vol. 24, pp. 2132-2138.
36. Rangelow I. W., Ivanov T., Ivanova K. Piezoresistive and self-actuated 128-cantilever arrays for nanotechnology applications, Microelectronic Engineering, 2007, Vol. 84, pp. 1260-1264.
37. Andreas Schneider, Robert H. Ibbotson, Richard J. Dunn et al. Arrays of SU-8 microcantilevers with integrated piezoresistive sensors for parallel AFM applications, Microelectronic Engineering, 2011, Vol. 88, pp. 2390-2393.
38. Ansari M.Z., Cho C. An Analitical Model of Joule Heating in Piezoresistive Microcantilever, Sensors, 2010, Vol. 10, pp. 9668-9686.
39. Itoh T., Suga T. Piezoelectric sensor for detecting force gradients in atomic force microscopy, Japanese Journal of Applied Physics, 1994, Vol. 33, pp. 334-339.
40. Indermuhle P.F., Schurmann G., Racine G.A. et al. Fabrication and characterization of cantilevers with integrated sharp tips and piezoelectric elements for actuation and detection for parallel AFM applications, Sensors and Actuators A, 1997, Vol. 60, pp. 186-190.
41. Brugger J., Buser R.A., Rooij N.F. Micromachined atomic force microprobe with integrated capacitive read-out, J. Micromech. Microeng, 1992, Vol. 2, pp. 218-220.
42. Kim S.-J., Ono T., Esashi M. Capacitive resonant mass sensor with frequency demodulation detection based on resonant circuit, Applied Physics Letters, 2006, Vol. 88, pp. 053116-053116-3.
43. Binnig G., Quate C.F., Gerber Ch. Atomic force microscope, Jpn. Phys. Rev. Lett., 1986, Vol. 56, No. 9, pp. 930-933.
44. Scheible D.V., Erbe A., Blick R.H. Dynamic control and modal analysis of coupled nano-mechanical resonators, Appl. Phys. Lett., 2003, Vol. 82, pp. 3333-3335.
45. Kim K.J., Park K., Lee J. et al. Nanotopographical imaging using a heated atomic force microscope cantilever probe, Sensors and Actuators A (Physical), 2007, Vol. 136, pp. 95-103.
46. King WP. Design analysis of heated atomic force microscope cantilevers for nanotopography measurements, J. Micromech. Microeng, 2005, Vol. 15, pp. 24-41.

Comments are closed.