Authors T.V. Semenistaya, A.A. Voronova, Z.Kh. Kalazhokov, L.B. Misakova, Kh.Kh. Kalazhokov
Month, Year 09, 2014 @en
Index UDC 539.217.5:546.28
Abstract Nanocomposite Co-containing polyacrylonitrile (PAN) films are obtained using incoherent infrared pyrolysis in different temperature-time IR-annealing modes. The literature on creation and research of materials sensitive to carbon monoxide is reviewed. The results obtained in experimental studies of different carbon monoxide sensors with an organic and inorganic polymer-based sensitive layer are described. The main technical sensor characteristics are presented. Subsequent to the literature review results, some conclusions on the appropriateness and processing of the chosen material can be made. Electric and sensing properties of the obtained film samples are examined; and chemical atomic film states are defined. The research undertaken shows that Co-containing PAN film-based materials with considerably high resistance (109–1011 Ohm) are sensitive to CO (S = 1,0÷2,4) at operational low temperatures (16÷32 єС) and detectable gas concentration within 15÷300 ppm. The principle application conditions of the suggested CO sensor and its general technical characteristics are defined.

Download PDF

Keywords Nanocomposite materials; PAN; organometallic films; IR-annealing; gas-sensing materials; CO.
References 1. Misra S.C.K., Mathur P., Srivastava B.K. Vacuum-deposited nanocrystalline polyaniline thin film sensors for detection of carbon monoxide, Sensors and Actuators, A, 2004, Vol. 114, pp. 30-35.
2. Paul S., Chavan N.N., Radhakrishnan S. Polypyrrole functionalized with ferrocenyl derivative as a rapid carbon monoxide sensor, Synthetic Metals, 2009, No. 159, pp. 415-418.
3. Malyshev V.V., Pislyakov A.V. Investigation of gas-sensitivity of sensor structures to carbon monoxide in a wide range of temperature, concentration and humidity of gas medium, Sensors and Actuators, B, 2007, Vol. 123, pp. 71-81.
4. Wang C.-T., Chen M.-T. Vanadium-promoted tin oxide semiconductor carbon monoxide gas sensors, Sensors and Actuators, B, 2010, Vol. 150, pp. 360-366.
5. Paul S., Amalraj F., Radhakrishnan S. CO sensor based on polypyrrole functionalized with iron porphyrin, Synthetic Metals, 2009, No. 159, pp. 1019-1023.
6. Dutta P.K., Frank M., Hunter G.W., George M. Reactively sputtered titania films as high temperature carbon monoxide sensors, Sensors and Actuators, B, 2005, Vol. 106, pp. 810-815.
7. Liu C., Noda Z., Sasaki K., Hayashi K. Development of a polyaniline nanofiber-based carbon monoxide sensor for hydrogen fuel cell application, International Journal of hydrogen energy, 2012, Vol. 37, pp. 13529-13535.
8. Salehi A., Nikfarjam A. Room temperature carbon monoxide sensor using ITO/n-GaAs Schottky contact, Sensors and Actuators, B, 2004, Vol. 101, pp. 394-400.
9. Kim B., Lu Y., Hannon A., Meyyappan M., Li J. Low temperature Pd/SnO2 sensor for carbon monoxide detection, Sensors and Actuators, B, 2013, Vol. 177, pp. 770-775.
10. Nagai D., Nakashima T., Nishibori M., Itoh T., Izu N., Shin W. Thermoelectric gas sensor with CO combustion catalyst for ppm level carbon monoxide detection, Sensors and Actuators, B, 2013, Vol. 182, pp. 789-794.
11. Santhosh P., Manesh K.M., Gopalan A., Lee K.-P. Novel amperometric carbon monoxide sensor based on multi-wall carbon nanotubes grafted with polydiphenylamine–Fabrication and
performance, Sensors and Actuators, B, 2007, Vol. 125, pp. 92-99.
12. Wang C.-T., Chen H.-Y., Chen Y.-C. Gold/vanadium–tin oxide nanocomposites prepared by co-precipitation method for carbon monoxide gas sensors, Sensors and Actuators, B, 2013, Vol. 176, P. 945-951.
13. Javadpour S., Gharavi A., Feizpour A., Khanehzar A., Panahi F. Morpholine doped poly (3,4-ethylenedioxy) thiophene–poly (styrenesulfonate) as a low temperature and quick carbon monoxide sensor, Sensors and Actuators, B, 2009, Vol. 142, pp. 152-158.
14. Radhakrishnan S., Paul S. Conducting polypyrrole modified with ferrocene for applications in carbon monoxide sensors, Sensors and Actuators, B, 2007, Vol. 125, pp. 60-65.
15. Xu T., Luan W., Qi Y., Tu S. Thermoelectric carbon monoxide sensor using Co-Ce catalyst, Sensors and Actuators, B, 2008, Vol. 133, pp. 70-77.
16. Zhuiykov S. Carbon monoxide detection at low temperatures by semiconductor sensor with nanostructured Au-doped CoOOH films, Sensors and Actuators, B, 2008, Vol. 129, pp. 431-441.
17. Semenistaya T.V., Petrov V.V., Bednaya T.A. Energoeffektivnye sensory gazov na osnove nanokompozitnykh organicheskikh poluprovodnikov [Energy efficient gas sensors based on
nano-composite organic semiconductors]. Taganrog: Izd-vo YuFU, 2013, 120 p.
18. Semenistaya T.V., Petrov V.V., Lu P. Nanocomposite of Ag-polyacrylonitryle as a selective chlorine sensor, Advanced Materials Research, 2013, Vol. 804, pp. 135-140.
19. Falchari M.M., Semenistaya T.V., Plugotarenko N.K., Lu P. Razrabotka tekhnologii po-lucheniya gazochuvstvitel'nogo materiala na osnove PAN s primeneniem kvantovo-khimicheskikh
raschetov i metoda Monte-Karlo [The development of technology for gas sensitive material based PAN with the application of quantum-chemical calculations and Monte Carlo], Nano- i mikrosistemnaya tekhnika [Nano- and Microsystem technology], 2013, No. 8, pp. 34-40.
20. Lu P., Ivanets V.A., Semenistaya T.V., Plugotarenko N.K. Issledovanie vliyaniya struk-tury plenok serebrosoderzhashchego PAN na ikh gazochuvstvitel'nost' s primeneniem teorii
samoorganizatsii, teorii informatsii i atomno-silovoy mikroskopii [Study of the influence of the structure of films of silver PAN on their getcustomername using the self-organization theory, information theory and atomic force microscopy], Nano- i mikrosistemnaya tekhnika [Nano- and Microsystem technology], 2012, No. 5, pp. 21-28.
21. Bednaya T.A., Konovalenko S.P., Semenistaya T.V., Petrov V.V., Korolev A.N. Gazochuvstvitel'nye elementy sensora dioksida azota i khlora na osnove kobal'tsoderzhashchego poliakrilonitrila [Gas sensitive elements of the sensor nitrogen dioxide and chlorine-based cobalt containing polyacrylonitrile], Izvestiya vysshikh uchebnykh zavedeniy. Elektronika [News of Higher Educational Institutions. Electronics], 2012, No. 4 (96), pp. 66-71.
22. Petrov V.V., Plugotarenko N.K., Semenistaya T.V. Self-organization in the thin gas-sensitive Ag-containing polyacrylonitrile films, Chaotic Modeling and Simulation, 2013, No. 4, pp. 609-614.
23. Nandini C., Sudhapada B., Palit S., Mrinal M. An XRD characterization of the thermal degradation of polyacrylonitrile, Journal of Polymer Science Part B: Polymer Physics, 1995,
Vol. 33, Issue 12, pp. 1705-1712.
24. Jing M., Wang Ch., Wang Q., Bai Y., Zhu B. Chemical structure evolution and mechanism during pre-carbonizationof PAN-based stabilized fiber in the temperature range of 350-600 єC,
Polymer Degradation and Stability, 2007, Vol. 92, pp. 1737-1742.
25. Nataraj S.K., Yang K.S., Aminabhavi T.M. Polyacryonitrile-based nanofibers – A state-of-the art review, Progress in Polymer Science, 2012, Vol. 37, pp. 487-513.
26. Yalovega G.E., Shmatko V.A., Nazarova T.N., Petrov V.V., Zabluda O.V. Issledovanie fazovogo sostava nanokompozitnykh materialov SiO2CuOx, metodami rentgenovskoy spektroskopii pogloshcheniya i fotoelektronnoy spektroskopii [The study of the phase composition of nanocomposite materials SiO2CuOx, by x-ray absorption spectroscopy and photoelectron spectroscopy], Izvestiya vuzov. Materialy elektronnoy tekhniki [Izvestiya vuzov. Materials of Electronic Engineering], 2010, No. 4, pp. 31-35.

Comments are closed.