Authors V.P. Fedosov, R.V. Rubtsov
Month, Year 11, 2014 @en
Index UDC 004.93’12, 004.93’14
Abstract The paper represents regular method of synthesis of a bit signal for the wireless communication networks using frequency manipulation for coding of the transferred information. The synthesized signal possesses two-level envelope and low side-lobe level in the set frequency area. The method is based on repeated application of operation of a delay and addition of a pack of the rectangular impulses, equivalent to convolution of an initial signal with two delta-functions, separated with a delay interval. Delay choice is made considering mutual mismatch of impulses. As a result we receive a pack of impulses with pulse-width modulation and two-level envelope. To test the working capacity of algorithm the program realization has been created using National Instruments LabVIEW developer software. Temporal and spectral characteristics of signals have been researched, confirming initial preconditions. Besides a radio communication, the algorithm can find application in Doppler"s ultrasonic systems that use high-powered nonlinear amplifiers. Radiation of such signals by the narrow-band antenna transforms pulse-width modulation into amplitude modulation. Signals with such modulation have low side-lobe level in a wide frequency band.

Download PDF

Keywords Regular method of synthesis of a bit signal without window processing; low sidelobe level of spectrum; two-level envelope.
References 1. Pan L., Xiao S., Qiu Y., Zhang T. and Li B. An Adaptive Precoder for Out-of-band Power Reduction in OFDM-Based Cognitive Radio System, International Journal of Future Generation Communication and Networking, 2014, Vol.7, No. 1, pp. 137-150.
2. Fischer R.F.H., Siegl C., Hoch M. Out-of-band power reduction in MIMO OFDM, in Proceedings of International ITG/IEEE Workshop on Smart Antennas, Vienna, Austria, February 2007.
3. Cosovic I., Vijayasarathi Janardhanam. Sidelobe suppression in OFDM systems, Proceedings 5th International Workshop on Multi-Carrier Spread-Spectrum (MC-SS'05), Oberpfaffenhofen. Germany, 2005, pp. 473-482.
4. Baltar L.G., Waldhauser D.S. and Nossek J.A. Out-of-band radiation in multicarrier systems: a comparison, Proceedings from the 6th International Workshop on Multi-Carrier Spread Spectrum, May 2007 (Springer), Herrsching, Germany, pp. 107-116.
5. Siegl C. and Fischer R.F.H. Out-of-Band Power Reduction using Selected Mapping with Power-Amplifier-Oriented Metrics, Proceedings of 14th International OFDM Workshop, Hamburg, Germany, September 2009.
6. Sokhandan N., Safavi S.M., Shafiee M. Out-of-Band Radiation Reduction in OFDM-based Cognitive Radio Systems, 18th European Signal Processing Conference (EUSIPCO-2010), Aalborg, Denmark, August 23-27, 2010, pp. 870-874.
7. Sahoo A.K., Panda G. Sidelobe Reduction of LFM Signal Using Convolutional Windows, International Conference on Electronic Systems (ICES-2011), 7-9 January 2011, National Institute of Technology, Rourkela, India, pp. 86-89.
8. Vizitiu I.-C. Some Aspects of Sidelobe Reduction in Pulse Compression Radars Using NLFM Signal Processing, Progress In Electromagnetics Research C, 2014, Vol. 47, pp. 119-129.
9. Marder M.M., Surkov M.N., Fedosov V.P. Synthesis of sounding signals with low level of out-of-band radiation, Radioelectronics and Communications Systems (English translation of Izvestiya Vysshikh Uchebnykh Z., 1987, No. 30 (7), pp. 16-19.
10. Senina I.S., Surkov M.N., Fedosov V.P. Envelope shaper for probing signals with extraband radiation low level, Izvestia VUZ: Radioelektronika, 1993, No. 36 (4), pp. 68-71.

Comments are closed.