Article

Article title OPTIMISATION OF PARAMETRES OF HYBRID ADAPTIVE INTELLECTUAL REGULATORS
Authors Yu.A. Zargaryan, E.V. Zargaryan, I.V. Pushnina
Section SECTION V. MONITORING AND CONTROL IN TECHNICAL SYSTEMS
Month, Year 11, 2014 @en
Index UDC 519.7
DOI
Abstract Hybrid control systems are applied at the decision of management tasks of productions and objects. The review of the publications reflecting evolution of hybrid control systems are resulted, since the simple theoretic-plural description and end intellectual systems of decision-making support. Features of hybrid control systems designing, as two-level system of handling and interaction of the data were considered. The block diagram of the hybrid control system, differ from availability of classical and indistinct regulators. It is noticed that quality of management depends on adequacy of rules base for the indistinct regulator, set by experts. Multiobjective optimization of functioning the hybrid control systems are considered at the task of local criteria in the form of indistinct intervals. Methods of scalarization which are applied when ranging criteria were considered. Criterion function are specified by local criteria. Optimization is connected with search of the managing influences providing optimum values of multidimensional criterion function. Application of a threshold optimization method for search the Pareto-optimal decision are considered. The approach to an estimation the variants Pareto-optimal decisions with application criteria of an utility estimation are offered. The algorithm and a program application for an estimation of Pareto-optimal decision taking into account utility are developed.

Download PDF

Keywords Control; uncertainty; hybrid system; modeling; artificial intelligence; method of threshold optimization.
References 1. Belousov O.A. Gibridnyy regulyator dlya energosberegayuschego upravleniya elektrokamernymi pechami [Hybrid controller for the power-saving control elektrochemie furnaces], Promyishlennye kontrollery ASU [Industrial controllers ACS], 2005, No. 7, pp. 29-30.
2. Vagin V.N. Realizatsiya kontseptsii raspredelennogo II i mnogoagentnosti v sistemah podderzhki prinyatiya resheniy na baze kompleksa G2 GDA [Implementation of the concept of distributed AI and mnogodelnosti systems decision support on the basis of complex G2+GDA], Trudy Mezhdun. seminara «Raspredelennyy iskusstvennyiy intellekt i mnogoagentnye sistemy – DIAMAS 97» [Proceedings Of The International. workshop "Distributed artificial intelligence and multi - agent systems DIAMAS 97"]. St. Petersburg, 1997.
3. Gavrilov A.V. Arhitektura gibridnoy sistemy upravleniya mobil’nogo robota [The hybrid control system of mobile robot], Nauchnyy vestnik NGTU [Scientific Bulletin of NSTU], 2004, No. 2.
4. Zargaryan Yu.A. Razrabotka i issledovanie metodov prinyatiya resheniy v usloviyah nepolnoty dannyh pri nechetkom opisanii parametrov modeley. Dis. … kand. tekhn. nauk [Research and
development of methods of decision making with incomplete data when a vague description of model parameters. Cand. eng. sc. diss.]. Taganrog: TTI YuFU, 2012.
5. Ignatev V.V., Finaev V.I. The Use Hybrid Rerulation in Desing of Control System, World Applied Sciences Journal. – 2013, No. 23 (11), pp. 1291-1297.
6. Kolesnikov A.V. Gibridnye intellektualnye sistemy: teoriya i tehnologiya razrabotki [Hybrid intelligent systems: theory and technology development]. St. Petersburg: Izd-vo SPbGTU, 2001, 600 p.
7. Lavrik S.A. Postroenie gibridnoy neyroekspertnoy sistemy opredeleniya informativnykh seysmicheskikh atributov [Building hybrid euroexpert system for identifying informative seismic attributes], Novye tehnologii [New technologies], No. 4, 2007.
8. Osipov G.S. Dinamika v sistemah, osnovannykh na znaniyah [Speaker systems, knowledgebased], Izvestiya RAN. Teoriya i sistemy upravleniya [Izvestiya of the Russian Academy of Sciences. Theory and systems management], 1998, No. 5, pp. 24-28.
9. Pavlenko E.N., Finaev V.I., Ignatev V.V. Modelirovanie obuchaemogo nechetkogo regulyatora [Simulation of fuzzy controller trainee], Vestnik RGUPS [Bulletin of the Rostov State University of Transport], 2014, No. 1 (53), pp. 69-75.
10. Finaev V.I., Pavlenko E.N., Kirilchik S.V. Reshenie zadach upravleniya s primeneniem intellektualnykh gibridnykh system [Solving the control problems using the intelligent hybrid systems], Izvestiya YuFU. Tehnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 5 (154), pp. 140-147.
11. Altannar Chinchuluun, Panos M. Pardalos, Rentsen Enkhbat, Ider Tseveendorj. Optimization and Optimal Control: Theory and Applications. Publisher: Springer-Verlag New York, LLC. 2010, pp. 524.
12. Finaev V.I., Zargaryan Yu. Multicriterion Decision Making in Case of Incomplete Source Data. World Applied Sciences Journal 23 (9): 1253-1261, 2013 ISSN 1818-4952. ©IDOSI Publications, 2013 DOI: 0.5829/idosi.wasj.2013.23.09.13140. [Electronic resource]. Available at: http://www.idosi.org/wasj/wasj23(9)13/19.pdf.
13. Gabriele Eichfelder. Adaptive Scalarization Methods in Multiobjective Optimization. Publisher: Springer, 2008, pp. 256.
14. Medsker L.R. Hybrid Intelligent Systems, International Journal of Computational Intelligence and Organizations, 1996, Vol. 1, pp. 10-20.
15. Zargaryan E.V., Zargaryan Yu.A. Informatsionnoe obespechenie dlya zadach mnogokriterialnoy optimizatsii po metodu Pareto [Information support for the task of multiobjective optimization Pareto method], Informatizatsiya i svyaz’ [Informatization and Communication], 2013 No. 2, pp. 114-118.

Comments are closed.