Authors V.Kh. Pshikhopov, M.Yu. Medvedev, A.E. Kulchenko
Month, Year 11, 2014 @en
Index UDC 629.73.015:533.6:519.711.3
Abstract The relevance of control algorithms development the autopilot of robotic helicopter complex is identified. The problem definition of control algorithms development is presented. The stages of the autopilot control algorithms development of robotic helicopter complex is presented. The general approach of position-trajectory control algorithms for vehicles is presented. To use position-trajectory control algorithms of small-scale single main rotor helicopter we need to solve three problems. These problems come from a small-scale single main rotor helicopter features. In the first problem the nonlinear equations to transform control forces to controls of actuators are considered. The diagram of transformation from controls to actuators’ analog signals is presented. The solution of the second problem results from definition of vehicle technical limitations. In the third problem controls distribution is considered. Regards number of helicopter controls and degrees of freedom, the same control channels control the helicopter velocities and attitude. In this paper we use the software-hardware complex for aerial vehicles simulation to validate control algorithms by numerical methods. The structure of the simulation complex is presented. We use simulation to make indoor validation of autopilot control algorithms synthesis procedure, to analyze its properties and define its performance in path-following accuracy with various wind disturbances. The results of simulation are presented. In the conclusions we discuss how to reduce the root mean square error of actual path and velocities.

Download PDF

Keywords Helicopter; control system; algorithm; synthesis; simulation.
References 1. Pshikhopov V., Sergeev N., Medvedev M., Kulchenko A. Helicopter autopilot design, SAE 2012 Aerospace Electronics and Avionics Systems Conference, 2012. (Available at:–01–2098/).
2. Pshikhopov V.Kh., Sergeev N.E., Kul'chenko A.E. Demonstratsionnyy prototip robotizirovannogo mini-vertoleta [Demonstration prototype robotic mini helicopter], Sed'moy
Mezhdunarodnyy aerokosmicheskiy kongress IAC'12 [Seventh international aerospace Congress IAC'12], 2012.
3. Pshikhopov V.Kh., Kul'chenko A.E., Chufistov V.M. Modelirovanie poleta odnovintovogo vertoleta pod upravleniem pozitsionno-traektornogo regulyatora [Flight simulation single-rotor helicopter running position-trajectory controller], Inzhenernyy vestnik Dona [Engineering journal of Don], 2013, No. 2. (Available at:
4. Kulchenko A., Kostukov V., Verevkina L., Chufistov V. The features of flight-dynamic single-rotor helicopter mathematical model: for application in autopilots that based on position-trajectory algorithms, MMAR – 2014. Międzyzdroje. September 2014.
5. Pshikhopov V.Kh., Sergeev N.E., Kul'chenko A.E. Algoritm obrabotki dannykh v zadache identifikatsii parametrov mini-vertoleta CALIBER V90 [Approach for data processing in the problem identification of parameters of mini-helicopter CALIBER V90], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No. 3 (128), pp. 58-65.
6. Pshikhopov V.Kh., Sergeev N.E., Medvedev M.Yu., Kul'chenko A.E. Otsenka parametrov podvizhnogo ob"ekta po rezul'tatam obrabotki navigatsionnoy informatsii [Estimation of parameters of a moving object according to results of processing navigation information], Informatsionnye tekhnologii v upravlenii [Information technologies in management]. St. Petersburg, 2012, pp. 639-646.
7. Pshichopov V., Sergeev N., Kulchenko A., Kadishev D. The concept modification of linguistic variable for 2D/3D vision-based robot navigation, SAUM–2012. Serbia, 2012.
8. Pshikhopov V.Kh. Pozitsionno-traektornoe upravlenie podvizhnymi ob"ektami [Position-trajectory control of mobile objects]. Taganrog: Izd-vo TTI YuFU, 2009, 183 p.
9. Pshikhopov V.Kh., Medvedev M.Yu. Sintez adaptivnykh sistem upravleniya letatel'nymi apparatami [Synthesis of adaptive control systems for aircrafts] Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2010, No. 3 (104), pp. 187-196.
10. Pshikhopov, V.Kh., Krukhmalev V.A., Medvedev M.Yu., Fedorenko R.V., Kopylov S.A., Budko A.Yu., Chufistov V.M. Adaptive control system design for robotic aircrafts, Proceedings – 2013 IEEE Latin American Robotics Symposium, 2013, pp. 67-70.
11. Pshikhopov V.Kh., Medvedev M.Yu. Block design of robust control systems by direct Lyapunov method, 2011 IFAC Proceedings Volumes (IFAC–PapersOnline). – 18 (PART 1), pp. 10875-10880.
12. Pshikhopov V., Medvedev M., Kostjukov V., Fedorenko R., Gurenko B., Krukhmalev V. Airship autopilot design, Proceedings of SAE AeroTech Congress&Exibition. – October 18-21. 2011.
(Available at:–01–2736/).
13. Medvedev M.Yu., Pshikhopov V.Kh. Robust control of nonlinear dynamic systems, Proc. of 2010 IEEE Latin-American Conference on Communications. September 14–17. 2010. Bogota, Colombia.
14. Kul'chenko A.E. Programmno-apparatnyy modeliruyushchiy kompleks dlya robota-vertoleta [Hardware modeling system for robot-helicopter], Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN [Journal Kabardino-Balkar Scientific Center of RAS], 2010, pp. 15-19.
15. Yur'ev B.N. Aerodinamicheskiy raschet vertoletov [Aerodynamic calculation helicopters]: Uchebnik [Textbook]. Moscow: Oborongiz, 1956, 560 p.

Comments are closed.