Article

Article title SYSTEM OF AUTOMATIC OPTIMIZATION IN THE CONDITIONS OF INCOMPLETENESS OF THE DATA ON THE EXAMPLE OF THE DRUM- TYPE COPPER
Authors V.I. Finaev, D.A. Beloglazov, E.N. Pavlenko, V.V. Shadrina
Section SECTION V. MONITORING AND CONTROL IN TECHNICAL SYSTEMS
Month, Year 11, 2014 @en
Index UDC 004.023, 681.518
DOI
Abstract In solving problems of management, there is the complexity of the application the classical control theory, as virtually all of the technical systems contain nonlinearity of uncertainty. Since the classical control theory can not be applied for the construction of the controller poorly understood object, then the adaptive control systems are applied with self-organization, self-regulation. Flowsheet drum steam boiler is considered, and its adjustable parameters are given. We consider the problem of automatic optimization studies using the method of statistical simulation. The structure of the simulation model containing components: a model of control object, the random disturbances, decision-making module and procedure for the collection of statistics to assess the quality of governance is considered. Algorithm of the functioning system is given, the algorithm for selecting the parameters of the automatic optimization. To solve the problems of research a software application is developed based on modern object-oriented technologies.

Download PDF

Keywords Control; uncertainty; adaptation; self-organizing; modeling; steam boiler.
References 1. Chaki F. Sovremennaya teoriya upravleniya. Nelineynye, optimal'nye i adaptivnye sistemy [odern control theory. Nonlinear, optimal and adaptive systems]: Per. s angl. V.V. Kapitonenko i
dr. Moscow: Mir, 1975, 422 p.
2. Krasovskiy A.A. i dr. Sovremennaya prikladnaya teoriya upravleniya: Optimizatsionnyy podkhod v teorii upravleniya [Modern applied control theory: an Optimization approach to control theory]. – Taganrog: Izd-vo TRTU, 2000. Parte 1, 400 p.
3. Aleksandrov A.G. Spravochnik po teorii avtomaticheskogo upravleniya [Handbook of automatic control theory]. Moscow: Nauka, 1987, 712 p.
4. Beloglazov D.A., Sinyavskaya E.D. Analiz sovremennykh metodov avtomaticheskogo upravleniya [The analysis of modern methods of automatic control], Nedelya nauki – 2010: Materialy nauchnykh rabot [Science week - 2010: proceedings of scientific works]. Taganrog: Izd-vo TTI YuFU, 2010, pp. 49-51.
5. Altunin A.E., Semukhin M.V. Modeli i algoritmy prinyatiya resheniy v nechetkikh usloviyakh [Models and algorithms for decision making in fuzzy conditions]: Monografiya. Tyumen': Izd-vo Tyumenskogo gosudarstvennogo universiteta, 2000, 352 p.
6. Saridis D. Samoorganizuyushchiesya stokhasticheskie sistemy upravleniya [Self-organizing stochastic control systems]: Per. s angl. Pod red. Ya.Z. Tsypkina. Moscow: Nauka, 1980, 400 p.
7. Rastrigin L.A. Adaptatsiya slozhnykh system [Adaptation of complex systems]. Riga: Zinatne, 1981, 375 p.
8. Ming-Li Chiang, Li-Chen Fu. Adaptive stabilization of a class of uncertain switched nonlinear systems with backstepping control, Automatica, 2014, Vol. 50, Issue 8, pp. 2128-2135.
9. Ruiyun Qia, Gang Taob, Bin Jianga. Adaptive control of MIMO time-varying systems with indicator function based parametrization, Automatica, 2014, Vol. 50, Issue 5, pp. 1369-1380.
10. Jiangping Hua, Wei Xing Zhengb. Adaptive tracking control of leader - follower systems with unknown dynamics and partial measurements, Automatica, 2014, Vol. 50, Issue 5, pp. 1416-1423.
11. Agrawal S.K., Das S. Function projective synchronization between four dimensional chaotic systems with uncertain parameters using modified adaptive control method, Journal of Process Control, 2014, Vol. 24, Issue 5, pp. 517-530.
12. Rawaa Dawoud Al-Dabbagh, Azeddien Kinsheel, Saad Mekhilef, Mohd Sapiyan Baba, Shahaboddin Shamshirband. System identification and control of robot manipulator based on fuzzy adaptive differential evolution algorithm, Advances in Engineering Software, 2014, Vol. 78, pp. 60-66.
13. Besekerskiy V.A., Popov E.P. Teoriya sistem avtomaticheskogo regulirovaniya [Theory of automatic control systems]. Moscow: Nauka, 1979, 768 p.
14. Finaev V.I., Molchanov A.Yu. Metod modelirovaniya samonastraivayushchikhsya sistem upravleniya [Method for simulation of self-tuning control systems], Izvestiya TRTU [Izvestiya
TSURE], 2004, No. 8 (43), pp. 45-49.
15. Finaev V.I., Molchanov A.Yu. Modeli sistem avtomaticheskoy optimizatsii energeticheskikh ob"ektov [Model systems of automatic optimization of energy facilities], Izvestiya TRTU [Izvestiya TSURE], 2004, No. 7 (42), pp. 82-87.

Comments are closed.