Authors V.A. Tupikov, V.A. Pavlova, S.N. Krjukov, M.V Sozinova, P.K. Shulzhenko
Month, Year 01, 2015 @en
Index UDC 623.746.2+623.746-519
Abstract The main problem in solving the ATR tasks is the complexity of standard creation. It is just because the most of modern methods need the accurate assignments of the standard image for target recognition and this is not always possible. In this connection the aim of the suggested work is to observe the image processing methods, giving the possibility to simplify the process of standards creations. The given article proposes the use of linguistic methods in solving the problems of automatic image recognition. The linguistic methods are applicable in the problems of images recognition, which need information descripting the structure of every image object. The linguistic recognition methods are based on the image representation in the set form of primitive elements of different levels, describing the most significant parts of scene and the matching them with the given standard description according to given rules. The main advantage of linguistic methods is the possibility of given object recognition according to the given description of most significant standard features without the necessity of precise standard image assignment. Moreover the recognition result does not depend on scale and space orientation of object. Thus, the proposed linguistic methods are effective instrument for urbanistic objects recognition.

Download PDF

Keywords Structure description; linguistic algorithms; automatic image recognition; the all aspects recognition algorithms; Haugh transformation.
References 1. Afonasenko A.V. Raspoznavanie strukturirovannykh simvolov na osnovanii metodov morfologicheskogo analiza [Recognition of structured symbols on the basis of morphological analysis methods], Izvestiya Tomskogo politekhnicheskogo universiteta [Bulletin of the Tomsk
Polytechnic University], 2007, Vol. 311, No. 5, pp. 119-123.
2. Bakut P.A., Kolmogorov G.S., Vornovitskiy I.E. Segmentatsiya izobrazheniy: metody porogovoy obrabotki [Image segmentation: thresholding methods], Zarubezhnaya radioelektronika [Foreign electronics], 1987, No. 10, pp. 6-24.
3. Mestetskiy L.M. Matematicheskie metody raspoznavaniya obrazov. Kurs lektsiy [Mathematical methods of pattern recognition. A course of lectures]. Moscow: MGU, 2002.
4. Pavlidis T. Ierarkhicheskie metody v strukturnom raspoznavanii obrazov [Hierarchical methods in structural pattern recognition] Trudy instituta inzhenerov po elektrotekhnike i radioelektronike [Proceedings of Institute of engineers electrical and electronics], 1979, Vol. 67, No. 5, pp. 39-49.
5. Potapov A.S., Gurov I.P., Vasil'ev V.N. Matematicheskie metody i algoritmicheskoe obespechenie analiza i raspoznavaniya izobrazheniy v informatsionno-telekommunikatsionnykh sistemakh [Mathematical methods and algorithmic analysis and image recognition in information and telecommunication systems], Vserossiyskiy konkursnyy otbor obzorno-analiticheskikh statey po prioritetnomu napravleniyu "Informatsionno-telekommunikatsionnye sistemy", 2008 [All-Russian contest selection of op-ed articles in the priority "Information-telecommunication systems", 2008].
6. Reyer I.A. Segmentatsiya shtrikhov i ikh soedineniy pri raspoznavanii rukopisnogo teksta [Segmentation of the strokes and their connections with handwriting recognition], Trudy mezhdunarodnoy konferentsii "Grafi-kon-99" [Proceedings of the international conference "Grap-con-99"]. Moscow: MGU, 1999, pp. 151-155.
7. Zelentsov I.A., Filippovich Yu.N. Raspoznavanie obrazov na osnove strukturnykh freymovykh opisaniy v skoropisnykh tekstakh XVII v. [Pattern recognition based on structural frame descriptions in cursive texts XVII], Nauka i obrazovanie: elektronnoe nauchno-tekhnicheskoe izdanie [Science and education: electronic scientific edition], 2011, Issue 12.
8. Gorokhovatskiy V.A. Raspoznavanie izobrazheniy v usloviyakh nepolnoy informatsii [Image recognition in conditions of incomplete information]. Khar'kov: KhNURE, 2003, 112 p.
9. Putyatin E.P., Gorokhovatskiy V.A., Kuz'min S.V. Raspoznavanie izobrazheniy v pro-stranstve invariantnykh lokal'nykh priznakov [Image recognition in the space of invariant local characteristics], Radioelektronika i informatika [Radioelektronika I informatika], 2006, No. 1 (32), pp. 69-73.
10. Bunke H. Structural and syntactic pattern recognition, World Scientific, Singapore, 1996, pp. 163-209.
11. Devijver P. and Kittler J. Pattern recognition: A statistical approach, Prentice-Hall, Englewood Cliffs, NJ, 1982.
12. Kasami T. An efficient recognition and syntax analysis algorithm for context-free languages, Scientific report AFCLR-65-758, Air Force Cambridge Research Laboratory, Bedford, Mass., USA, 1965.
13. Schlesinger M. Algebraic method for solution of some best matching problems, In Advances in Computer Vision, Proceedings of the Dagstuhl Seminar, Saarland, Germany, 1997, pp. 201-210.
14. Erol A., Bebis G., Nicolescu M., Boyle RD., Twombly X. Vision-based hand pose estimation: A review, Computer Vision and Image Understanding, 2007, Vol. 108, Issues 1-2, pp. 52-73.
Special Issue on Vision for Human-Computer Interaction.
15. Sulehria H.K., Ye Zhang. Vehicle Logo Recognition Using Mathematical Morphology, Proc. 6th WSEAS Int. Conference on Telecommunicationsand Informatics, 2007, pp. 95-98.
16. Young T. Handbook of Pattern Recognition and Image Processing: Computer Vision, volume 2, San Diego, USA. Academic Press, 1994.
17. Fu K. Strukturnye metody raspoznavaniya obrazov [Structural methods of pattern recognition]. Moscow: Mir, 1977, 320 p.
18. Gonsales R., Vuds R. Tsifrovaya obrabotka izobrazheniy [Digital image processing]. Moscow: Tekhnosfera, 2005, 1072 p.
19. Duda R.O., Hart P.E. Use of the Hough Transformation To Detect Lines and Curves in Pictures, Comm. ACM, 1972, Vol. 15, January, pp. 11-15.
20. Avtomaticheskiy analiz slozhnykh izobrazheniy. Sbornik perevodov [Automatic analysis of complex images. A collection of translations], Pod red. Bravermana E.M. [Edited by Braverman E.M.]. Moscow: Mir, 1969, pp. 22-30.

Comments are closed.