Authors G.I. Dzhandzhgava, T.V. Sazonova, M.S. Shelagurova
Month, Year 01, 2015 @en
Index UDC 531.383.11
Abstract Methods of creation and structure of airborne database on terrain relief are considered in the article. The database is used for performance of various airborne applications including extreme correction of navigation parameters, low-altitude flight, early ground proximity warning and display of cartographic data in the 3D and relief “shading” modes. The most popular formats for writing terrain relief matrix (TRM) outside Russia are DEM and DTED. In Russia TRMs are created on the basis of SXF (vector format) files. Methods and algorithms of TRM creation by the use of SXF files proposed by the authors are based on processing of relief isoline layer, areal, linear and point objects which have semantics with altitude value. Moreover a method of interpolation of inversely weighted distances improved by the authors is used for creation of TRMs. Authors proposed Systems of TRM writing of two accuracy levels for polar and nonpolar Earth’s areas developed by the authors, structure of airborne TRM format are given in the article as well as algorithms of coordinate conversion for polar areas. The feature of the proposed system is that writing discretes are multiple of “2” by longitude for adjacent nonpolar areas that allows of creating 3D images without distortions at area joints. In the low-altitude flight and early ground proximity warning modes the authors proposed to create a pseudorelief matrix (PRM) on the basis of TRM that is a maximum values from relief sums and height object structure in the neighbourhood of satellite navigation system uncertainty. It is proposed to create a shaded relief matrix on the basis of PRM for the relief “shading” mode. Developed methods and algorithms allow for creating an airborne database on Earth’s terrain relief for performance of advanced airborne applications.

Download PDF

Keywords Terrain relief matrix; airborne format; terrain relief interpolation methods; polar and non-polar Earth’s areas; polar azimuth equidistant projection; pseudorelief; relief shading.
References 1. Standards for Digital Elevation Models, 01/1998.
2. Military Specification Digital Terrain Elevation Data (DTED) MIL-PRF-89020B.
3. Panorama. Otkrytyy format tsifrovoy informatsii o mestnosti. Struktura tekstovogo fayla [The panorama. Open format digital information for the site. The structure of the text file]. Kod formata – SXF. Redaktsiya 4.0. 1991-2014 gg.
4. Panorama. Vektornyy format "SXF". Struktura dannykh v dvoichnom vide [The panorama. Vector format "SXF". The structure of the data in binary form]. Redaktsiya 4.0. 1991-2014 gg.
5. DeMers M.N. Geograficheskie informatsionnye sistemy. Osnovy [eographic information system. The basics]: Per. s angl. Data+, 1999, 288 p.
6. ESRI White paper ArcGis 3D Analyst. 3D vizualizatsiya, topograficheskiy analiz, postroenie poverkhnostey [ESRI White paper ArcGis 3D Analyst extension. 3D visualization, topographic analysis, the structure of surfaces], 2002, 14 p.
7. Available at: метод ОВР.
8. Available at:
9. DO-315A Minimum Aviation System Performance Standards (MASPS) for Enhanced Vision Systems, Synthetic Vision Systems, Combined Vision Systems and Enhanced Flight Vision Systems.9/15/2010.
10. Aviatsionnye sistemy uluchshennogo i sintezirovannogo videniya (Analiticheskiy obzor po materialam zarubezhnykh informatsionnykh istochnikov) [Aviation system enhanced and synthetic vision (Analytical review on foreign information sources)], Pod obshchey red. ak. RAN
E.A. Fedosova. Sostaviteli Yu.V. Vizil'ter, O.V. Vygolov, S.A. Nabokov, Yu.V. Pavlov, S.G. Khokhlov [Under the General editorship of academician RAS E.A. Fedosov. The Drafters Yu.V. Visiter, O.V. Bigalow, S.A. Nabokov, Yu.V. Pavlov, S.G. Khokhlov]. FGUP GOSNIIAS. Moscow, 2011.
11. Pavlov N.V. Bortovaya sistema tekhnicheskogo zreniya s rasshirennymi vozmozhnostyami vizualizatsii [On-Board vision system with advanced visualization], Aviatsionye sistemy [Aviazione system], 2011, No. 3.
12. Sistema sintezirovannogo videniya [The system improved vision for EVS aircraft company Gulfstream Express information], IEEE Aerosp,. and Electron. Syst. Mag., 1993, Vol. 8, No. 3, pp. 6-13.
13. Sistema uluchshennogo videniya EVS dlya samoletov firmy Gol'fstrim Ekspress-informatsiya [The system improved vision for EVS aircraft company Gulfstream Express information], Aviatsionye sistemy [Aviazione system], 2001, No. 48, pp. 3-4.
14. Tiana C., Hennessy R., Alter K., Jennings C. Fused enhanced and synthetic vision systems (EVS/SVS) for low-visibility operations, Proc. SPIE 6559, (2006)
15. He G., Feyereisen T., Gannon A., Wilson B., Schmitt J., Wyatt S., and Engels J. Flight Tests of Advanced 3D-PFD with Commercial Flat-Panel Avionics Displays and EGPWS System, Proc. SPIE 5802, 2005, pp. 177-184
16. He G., Feyereisen T., Wilson B., Wyatt S., and Engels J. Flight Tests of a Hybrid-Centered Integrated 3D, Proc. SPIE 6226, 2006.
17. He G., Feyereisen T., Conner K., Wyatt S., Engels J., Gannon A., and Wilson B. EGPWS on Synthetic Vision Primary Flight Display, Proc. SPIE 6559, 2007.
18. Beloglazov I.N., Dzhandzhgava G.I., Chigin G.P. Osnovy navigatsii po geofizicheskim polyam [Basic navigation for geophysical fields]. Moscow: Nauka, 1985.
19. Theunissen E., Koeners G.M.,Rademaker R.M.,Jinkins R.D. & Etherington T.J. (2005). Terrain following and terrain avoidance with synthetic vision. Proceeding of the 24th Digital Avionics Systems Conference, 4.D.2.1 – 4.D.2.11.
20. Aviatsiya, ponyatnaya vsem. Sistema TCAS. Preduprezhdenie stolknoveniy samoletov v vozdukhe. Opublikovano 24.06.2014 na sayte [Aviation, understandable to all. TCAS. The prevention of collisions between aircraft in the air. Published 24.06.2014 on the website].
21. Burrough P.A. and McDonell R.A. Principles of Geographical Information Systems (Oxford University Press, New York), 1998, 190 p.

Comments are closed.