# Article

 Article title DEVELOPMENT OF UNMANNED BOATS CONTROL ALGORITHMS AS THE NONLINEAR OBJECT Authors A.R. Gayduk, B.V. Gurenko, E.A. Plaksienko, I.O. Shapovalov Section SECTION V. SYSTEM AND CONTROL POINTS Month, Year 01, 2015 @en Index UDC 62-503.51: 62-531.4: 62-531.6 DOI Abstract When you create a high-speed unmanned boats there is a problem of development of the system and control algorithm automatically propelling the boat along a predetermined trajectory at a predetermined velocity. As is known to solve this problem, first of all, must have an adequate mathematical model that describes the motion of the boat. In this paper, using refined mathematical model of the freeboard boat "Neptune", proposed in [4]. According to this model, the boat is a multidimensional object of control, as it has two control and two controlled variables. Therefore, the control system of boat is synthesized as a multidimensional, based on the model presented in the form of a controlled Jordan. This allows on the one hand to take into account non-linear models, and on the other hand, the choice of the parameters of the laws and control algorithms provide the desired quality of the process of autonomous movement boats along a predetermined path. The resulting non-linear autonomous control algorithm is implemented using the onboard computer and needed to control the variables boats will be measured continuously sensors. Investigation of properties of closed-loop control was carried out by numerical simulation on a PC. The paper developed a system of automatic traffic control unmanned boat. It is assumed that the boat is equipped with a measuring system that can determine its current position and velocity of linear and angular displacements. The control system is synthesized on the basis of a mathematical model of a boat, obtained in [4]. To solve the problem, the equations of control channels are boats to a managed form of Jordan, which allows analytically find the necessary control. The study synthesized control system, taking into account the structural constraints on the values of the control actions, carried out by computer simulation in MATLAB. Download PDF Keywords Autopilot; unmanned boat; a managed form of Jordan; algorithms of management; mathematical model. References 1. Upravlenie podvizhnymi ob"ektami. Bibliograficheskiy ukazatel'. V 3-kh vypuskakh. Vyp. 3. Morskie ob"ekty [Management of mobile objects. Bibliographic index. In 3 editions. Vol. 3. Marine objects], Uchrezhdenie Rossiyskoy akademii nauk Institut problem upravleniya im. V.A. Trapeznikova RAN [Institution of the Russian Academy of Sciences Institute of problems of management. V. A. Trapeznikov Academy of Sciences]. Moscow, 2011, 150 p. 2. Vagushchenko L.L., Tsymbal N.N. Sistemy avtomaticheskogo upravleniya dvizheniem sudna [System of automatic control of the movement of the vessel]. 3rd ed., pererab. i dop. Odessa: Fenіks, 2007, 328 p. 3. Lukomskiy Yu.A., Chugunov V.S. Sistemy upravleniya morskimi podvizhnymi ob"ektami [Control system Maritime mobile objects]: Uchebnik [Textbook]. Leningrad: Sudostroenie, 1988, 272 p. 4. Pshikhopov V.Kh., Gurenko B.V. Razrabotka i issledovanie matematicheskoy modeli avtonomnogo nadvodnogo mini-korablya «Neptun» [Development and investigation of mathematical models of Autonomous surface mini-ship "Neptune"], Inzhenernyy vestnik Dona [Engi- neering journal of Don], 2013, No. 4. Available at: http://www.ivdon.ru/magazine/archive/n4y2013/1918. 5. Gayduk A.R. Teoriya i metody analiticheskogo sinteza sistem avtomaticheskogo upravleniya (polinomial'nyy podkhod) [Theory and methods of analytical synthesis of automatic control systems (polynomial approach)]. Moscow: Fizmatlit, 2012, 360 p. 6. Inzartsev A.V., Kiseljev L.V, Medvedev A.V, Pavin A.M. Autonomous underwater vehicle motion control during bottom objects and hard-to-reach areas Investigation, Motion Control. Vienna: InTech, 2010, pp. 207-228. 7. Inzartsev A.V, Kiseljev L. V., Matviyenko Yu. V. et al. Integrated positioning system of autonomous underwater robot and its application in high latitudes of arctic zone, Motion control. Vienna: InTech, 2010, pp. 229-244. 8. Kiselev L.V. Upravlenie dvizheniem avtonomnogo podvodnogo robota pri traektornom obsledovanii fizicheskikh poley okeana [Motion control of an Autonomous underwater robot trajectory when the examination of the physical fields of the ocean], Avtomatika i telemekhanika [Automation and remote control], 2009, No. 4, pp. 141-148. 9. Kiselev L.V. Kod glubiny [Code depth]. Vladivostok: Dal'nauka, 201, 332 p. 10. Bruzzone Ga., et al. A Simulation environment for unmanned underwater vehicles development // MTS / IEEE Oceans 2001, Honolulu (USA ). – November 2001. – P. 1066-1072. 11. Piper J.E., Commander K.W., Thorsos E.I., and Williams K.L. Detection of buried targets using a synthetic aperture sonar, IEEE Journal of oceanic engineering, 2002, Vol. 27, No. 3, pp. 495-504. 12. Clem T.R. and Lopes J.L. Progress in the development of buried mine hunting systems, Proc. of oceans-2003, MTS, IEEE. San-Diego, Sept. 22–26. San- Diego, 2003, pp. 500-511. 13. Bellingham J.G., Bales J.W., Atwood D.K. et al. Performance characteristics of the ODYSSEY AUV, Proc. of the 8th Int. Sympos. on Unmanned untethered submersible technology. AUSI, USA, 1993. 14. Griffiths G., Mlllard N.W., McPhall S.D., et al. Towards environmental monitoring with the AUTOSUB autonomous underwater vehicle, IEEE Journal, 1998, No. 9, pp. 121-125. 15. Hornfeld W., Baunsgaard J.P. C-systems-concept for a modular AUV family, Proc. of the 13th Int. Sympos. on unmanned untethered submersible technology. AUSI, USA, 2003. 16. Ageev M.D., Vasil'ev S.N., Kiselev L.V. i dr. Problemy sozdaniya intellektual'nykh podvodnykh robotov i perspektivy ikh resheniya na osnove integratsii mezhdistsiplinarnykh nauchnykh issledovaniy [The problem of creating intelligent underwater robots and prospects of their solution based on the integration of interdisciplinary research], Optimizatsiya, upravlenie, intellect [Optimization, control, intelligence], 2005, No. 2 (10), pp. 6-22. 17. Kiselev L.V., Inzartsev A.V., Matvienko Yu.V. Sozdanie intellektual'nykh ANPA i problemy integratsii nauchnykh issledovaniy [The creation of intellectual ANP and integration of scientific research], Podvodnye issledovaniya i robototekhnika [Underwater research and robotics], 2006, No. 1, pp. 6-17. 18. Kiselev L.V., Inzartsev A.V., Bychkov I.V. i dr. Situatsionnoe upravlenie gruppirovkoy avtonomnykh podvodnykh robotov na osnove geneticheskikh algoritmov [Situational management grouping of Autonomous underwater robots using genetic algorithms] Podvodnye issledovaniya i robototekhnika [Underwater research and robotics], 2009, No. 2 (8), pp. 34-43. 19. Kozlov R.I., Maksimkin N.N., Kiselev L.V., Ul'yanov S.A. Ustoychivost' konfiguratsiy gruppovogo dvizheniya avtonomnykh podvodnykh robotov v usloviyakh neopredelennosti [The stability of the configurations group movement of Autonomous underwater robots in the face of uncertainty], Podvodnye issledovaniya i robototekhnika [Underwater research and ro- botics], 2010, No. 1 (9), pp. 40-46. 20. Kiselev L.V., Inzartsev A.V., Maksimkin N.N., Khmel'nov A.E. Ob"ektno-orientirovannye modeli i sredstva intellektual'nogo upravleniya avtonomnym podvodnym robotom [Object-oriented models and tools for the intelligent control of an Autonomous underwater robot], Materialy 14-y Mezhdunar. nauch. konf. «Sistemnyy analiz, upravlenie i navigatsiya» [The materials of the 14th Intern. nauch. conf. "System analysis, control and navigation"]. Krym, Evpatoriya: MAI-PRINT, 2009, pp. 57-58. 21. Illarionov G.Yu. Nekotorye aspekty voennogo primeneniya podvodnykh robotov za rubezhom [Some aspects for military application of underwater vehicles abroad], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No. 3 (128), pp. 65-75. 22. Filaretov V.F. Sintez sistemy avtomaticheskogo formirovaniya programmnykh signalov upravleniya dvizheniem podvodnogo apparata po slozhnym prostranstvennym traektoriyam [Sintes system for automatic generation of software from motion control of underwater vehicle by complex spatial trajectories], Izvestiya RAN. Teoriya i sistemy upravleniya [Izvestiya RAS. Theory and management system], 2010, No. 3, pp. 99-107. 23. Burdinskiy I.N. Reshenie zadachi privedeniya k misheni avtonomnogo neobitaemogo apparata [The solution of the problem reduction to the target Autonomous unmanned apparatus], Materialy Sed'moy Vserossiyskoy nauchno-prakticheskoy konferentsii «Perspektivnye sistemy i zadachi upravleniya» [Proceedings of the Seventh all-Russian scientific-practical conference "future of the system and control problems"]. Taganrog: Izd-vo TTI YuFU, 2012, pp. 204-209. 24. Makarov I.M., Menskiy B.M. Lineynye avtomaticheskie sistemy [Linear automatic systems]. 2nd ed. Moscow: Mashinostroenie, 1982. 25. Gaiduk A.R., Vershinin Y.A. Jawaid A. Algorithm for computer aided optimal control systems design. Tech. paper. MS03-127. SME Drive. P.O. Box 930. Dearborn, MI 48121.

Comments are closed.