Authors V.F. Guzik, D.A. Bespalov
Month, Year 03, 2015 @en
Index UDC 004.42
Abstract The paper discusses some aspects of building integrating computer systems and modern theoretical element base. These studies are conducted at the Department of Computer Engineering Engineering-Technology Academy of the Southern Federal University (SFedU). Considered historically difficult to implement integrators and individual digital integrators, as well as modern methods of solving them. Describes an approach to the solution of problems by means of modern theoretical methods and hardware. Provides a theoretical description of the process of building structures and integrating separate digital integrators. Synthesized and grounded circuit-purpose computer system integrating type, consisting of a limited set of elements: integrator extrapolator, circuit diagram, buffered RAM to store the current circuit diagram, permanent memory for storing a plurality of switching matrices, as well as bus interface for communication inside the system, I/O interface for communication with the adjacent modules and external devices and control devices for controlling the computational process. The following is an example of solving practical problems based on it. The scheme of transition from a given function to generate the system equations Shannon. At the end of the practical part shows a configuration of integrating a homogeneous structure consisting of a digital integrator and the links between switching units. Describes the prospects of integrating computer systems. In conclusion, a brief characterization used for the practical implementation of integrating hardware structure and the resulting parameters of the scheme.

Download PDF

Keywords Problem-oriented computer systems; integrating structure; numerical integrator; FPGA.
References 1. Глушкова В.М. и др. Энциклопедия кибернетики. В 2-х т. – Киев: Главная редакция УКЭ, 1974. – 1227 с.
2. Гузик В.Ф. Модульные интегрирующие вычислительные структуры. – М.: Радио и связь, 1984. – 216 с.
3. Гузик В.Ф. Проектирование проблемно-ориентированных вычислительных систем. Ч. 1: Монография. – Таганрог: Изд-во ТТИЮФУ, 2009. – 463 с.
4. (реконфиг) Евреинов Э.В. Однородные вычислительные системы, структуры и среды. – М.: Радио и связь, 1981. – 208 с.
5. Жабин В.И., Ковалев Н.А. Реализация цифровых интеграторов на ПЛИС // Проблемы автоматизации и управления. – 2007. – № 1 (19). – С. 50-55.
6. Каляев А.В. Теория цифровых интегрирующих машин и структур. – М.: Советское радио, 1970. – 472 с.
7. Каляев И.А., Левин И.И. Семерников Е.А., Шмойлов В.И. Реконфигурируемые мультиконвейерные вычислительные структуры. – Ростов-на-Дону: ЮНЦ РАН, 2008. – 393 с.
8. Попов Б.А., Теслер Г.С. Вычисление функций на ЭВМ: Справочник. – Киев: Наукова думка, 1984. – 600 с.
9. Байков В.Д, Смолов В.Б. Специализированные процессоры: итерационные алгоритмы и структуры. – М.: Радио и связь, 1985. – 288 с.
10. Хамухин А.А. Ячеечная модель устройства для решения дифференциальных уравнений в частных производных // Известия Томского политехнического университета. – 2010. – C. 8.
11. Хамухин А.А. Реконфигурирование однородной вычислительной структуры с непрограммируемыми ячейками для решения дифференциальных уравнений в частных производных // Известия Томского политехнического университета. – 2010. – Т. 316, № 5. – С. 68-72.
12. AL-ALAOUI M.A. Novel digital integrator and differentiator // Electronics Letters. – 1993. – Vol. 29, no. 4. – P. 376-378.
13. Bruce J., Mauro B., Paolo G. Physics of Fractal operators. – Springer Verilog, 2003.
14. Gupta Maneesha, Jain Madhu, Kumar B. Novel class of stable wideband recursive digital integrators and differentiators // IET Signal Processing. – 2010. – Vol. 4, no. 5. – P. 560-566.
15. Franklin F.G., Powell J.D., Emami-Naeini A. Feedback Control of Dynamic Systems / Fourth ed. AddisonWesley, MA, 1994.
16. HSU CHEN-CHIEN, WANG WEI-YEN, YU CHIH-YUNG. Genetic algorithm-derived digital integrators and their applications in discretization of continuous systems // In Proc. CEC Congress on Evolutionary Computation. Honolulu (USA), 2002. – P. 443-448.
17. Ifeachor E.C., Jervis B.W. Digital Signal Processing: A Practical Approach. Second ed. Prentice-Hall, Pearson Education Limited, Harlow, 2002.
18. McEliece R.J. Designing Discrete-Time Filters for Differentiation and Integration. EE32b Signals, Systems, and Transforms. February 4, 2002. – 7 p.
19. Mitra S.K. Digital Signal Processing. Third ed. New York: McGraw-Hill, 2006.
20. Ngo N.Q. A new approach for the design of wideband digital integrator and differentiator // IEEE Trans. Circuits Syst. II: Express briefs. – 2006. – Vol. 53, no. 9. – P. 936-940.
21. Papamarkos N., Chamzas C. A new approach for the design of digital integrators // IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. – 1996. – Vol. 43, no. 9. – P. 785-791.
22. Philips C.L., Nagle H.T. Digital Control System Analysis and Design. Third ed. Prentice-Hall, Englewood Cliffs, NJ, 1995, Ch.11.
23. Tseng C.C., Lee S.L. Digital IIR integrator design using Richardson extrapolation and fractional delay // IEEE Transactions on Circuits and Systems, part I: regular papers. – 2008. – Vol. 55, no. 8. – P. 2300-2309.
24. Woulfe M., Manzke M. Towards a field- programmable physics processor (FP3). Interaction, Simulation and Graphics Lab (ISG), Department of Computer Science, Trinity College Dublin. The Eurographics Association 2006. – 7 p.
25. Zhou Y. J., Mei T. X. FPGA BASED REAL TIME SIMULATION FOR ELECTRICAL MACHINES. School of Electronic and Electrical Engineering, The University of Leeds, Leeds, LS2 9JT, UK. 2005. – 6 p.

Comments are closed.