Authors O.Yu. Voronkov, S.A. Sinyutin
Month, Year 03, 2015 @en
Index UDC 004.942
Abstract The paper describes the role of macromodels (reduced order models) in MEMS design & testing, explains their advantages in comparison with the finite element method (FEM) full models for behavioral modeling of MEMS dynamic characteristics in real-time & flexible study of the objects properties. A mathematical interpretation of the procedure for reducing the system dynamics equations order by switching from the full model in the form of state variables equations to the state variables equations of the macromodel is presented. A computer method for macromodels based on initial full FEM models forming with computer power requirements reducing & accuracy of the original model preserving in ANSYS program for subsequent export of mass, stiffness, damping, etc. matrices into MatLab program for the MEMS dynamics simulation is described in the generalized form. Four main stages of work over the macromodel in ANSYS are described & illustrated graphically: model preparation, generation pass, use pass, & expansion pass. The interrelationships of these stages, the resulting files that are received at the end of each stage & required for further work are marked, the concept of related analysis is explained, the possibility of further calculation results export into MatLab system is denoted. Relevance of the work is the need for MEMS dynamics behavioral modeling in real time to thoroughly verify the objects, what is difficult to realize with the help of full FEM models because of their complexity & costs large amounts of computer resources. Scientific novelty of the results is step by step description of the algorithm for MEMS macromodel based on full FEM model constructing for possible future data conversion into MatLab Simulink format.

Download PDF

Keywords Micro-electro-mechanical system; finite element method; macromodel; ANSYS; MatLab; database.
References 1. Wachutka G. The art of modelling coupled-field effects in microdevices and Microsystems // Int. Conf. on Modeling and Simulation of Microsystems. – 1999. – P. 697-703.
2. Ziegler F. Mechanics of Solids and Fluids. Springer, 1998.
3. Лысенко И.Е. Проектирование сенсорных и актюаторных элементов микросистемной техники. – Таганрог: Изд-во ТРТУ, 2005. – 103 с.
4. Chollet F., HB. Liu. A (not so) short Introduction to Micro Electromechanical Systems // URL: introMEMS.pdf.
5. Petrenko A.I. Macromodels of micro-electro-mechanical systems (МЕМS) // Institute of the Applied System analysis of NTUU “КPІ” URL:
6. Stephen Beeby, Graham Ensell, Michael Kraft, Neil White. MEMS Mechanical Sensors. London: In-Print-Forever, 2003. – 282 р.
7. Korvink Jan G. and Paul Oliver. MEMS: a practical guide to design, analysis, and applications. Norwich: William Andrew, Inc., 2006. – 965 p.
8. Senturia S.D. Microsystem Design. Kluwer Academic Publishers, 2001.
9. Gerlach G.and Dцtzel W. Introduction to Microsystem Technology, A Guide for Students, Wiley, Microsystem and Nanotechnology Series, 2008.
10. Senturia S.D., Aluru N. and White J. Simulating the behavior of MEMS devices: Computational methods and needs // IEEE Computational Science and Engineering. – 1997. – № 4. – P. 30-43.
11. Бруяка В.А., Фокин В.Г., Солдусова Е.А. и др. Инженерный анализ в ANSYS Workbench: учебное пособие. – Самара: Самар. гос. техн. ун-т, 2010. – 271 с.
12. Рилей Джордж А. Мир микро- и наноэлектроники: учебное пособие по современным технологиям в производстве микросистем: Пер. с англ. Курск: «Экспромт», 2009.
13. Eloe J.C. MEMS and Nano Divergence: Status of MEMS industry. YoleDevelopment, Sept. 2009.
14. Hung E.S. and Senturia S.D. Generating efficient dynamical models for microelectromechanical systems from a few finite-element simulation runs // IEEE Journal of Microelectromechanical Systems. – 1999. – № 8. – P. 280-289.
15. Zhao X., Abdel-Rahman E.M., and Nayfeh A.H. A reduced-order model for electrically actuated microplates // Journal of Micromechanics and Microengineering. – 2004. – № 14. – Р. 900-906.
16. Voigt P., Schrag G., Kцnig E.-R. and Wachutka G. Modeling Strategies for Microsystems // Tech. Dig. of MSM’98. – 1998. – P. 517-521.
17. Lienemann J. Complexity Reduction Techniques for Advanced MEMS Actuators Simulation // PhD Thesis, University of Freiburg, 2006.
18. Bai Z., Dewilde P.M., and Freund R.W. Reduced order modeling. In W.H.A. Schilders and E.J.W. ter Maten, editors, Numerical Methods in Electromagnetics, Handbook of Numerical Analysis. – Elsevier, Amsterdam, 2005. – Vol. XIII. – P. 825-895.
19. Bui-Thanh T., Willcox K., and Ghattas O. Model reduction for large-scale systems with high-dimensional parametric input space // SIAM J. Sci. Comput. – 2008. – № 30 (6). – P. 3270-3288.
20. Segalman D.J. Model reduction of systems with localized nonlinearities // ASME Journal of Computational and Nonlinear Dynamics. – 2007. – № 2. – P. 249-266,
21. Лысенко И.Е., Куликова И.В., Полищук Е.В. и др. Моделирование элементов микросистемной техники в программе ANSYS: Учебно-методическое пособие. – Таганрог: Изд-во Технологического института ЮФУ, 2007. – 42 с.
22. Басов К.А. ANSYS: справочник пользователя. – М.: ДКМ Пресс, 2005. – 640 с.
23. Жидков А.В. Применение системы ANSYS к решению задач геометрического и конечно-элементного моделирования: Учебно-методический материал по программе повышения квалификации «Информационные системы в математике и механике». – Нижний Нов-
город, 2006. – 115 с.
24. Леонтьев Н.В. Применение системы ANSYS к решению задач модального и гармонического анализа: учебно-методический материал по программе повышения квалификации «Информационные системы в математике и механике». – Нижний Новгород, 2006. – 101 с.
25. Coupled-Field Analysis Guide. Release 12.1 // ANSYS, Inc., 2009. URL:
26. Tamara Bechtold, Gabriele Schrag, and Lihong Feng. System-level Modeling of MEMS. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2013. – 562 p.
27. Alain Batailly. Exporting Ansys FEM models into Matlab mass and stiffness matrices // McGill University, Structural Dynamics and Vibration Laboratory, 2008. URL:

Comments are closed.