Article

Article title THE TIGHTLY COUPLED LOW COST MEMS INS AND VEHICLE GPS NAVIGATION SYSTEMS
Authors I.V. Shcherban, D.S. Konev, S.A. Tolmachev
Section SECTION III. EMBEDDED SYSTEMS USING MEMS SENSOR
Month, Year 03, 2015 @en
Index UDC 621.3.089.2, 681.518.3
DOI
Abstract The Tightly Coupled low cost microelectromechanical systems (MEMS) ins and GPS navigation systems has been realized. The decision enables a high sampling frequency registration of a linear and angular parameters of the motor vehicles with high precision in case of degradation of the visible satellite constellation. The traditional methods of tightly integration of inertial satellite navigation systems (IS NS) initially have a methodical error caused by linearization of a dynamic error models of inertial navigation systems and measurement models of satellite navigation systems (SNS). Ability to perform linearization procedure is justified by assumption that the deviation of measurement errors from their model values is small. When solving the dynamic equations of errors of inertial navigation systems, which are the variational equations, methodical errors occur inevitably. These errors result from the assumption about the smallness of the measurement errors of inertial sensors and from procedures of linearization of the model equations. At the same time, when using the rough strapdown inertial navigation system (SINS) implemented based on technology of MEMS as the part of IN SS, such an assumption is unacceptable and causes a significant increase in the above-mentioned methodical errors. In tightly associated integrated navigation systems such an a-priori unknown increase of methodical linearization error, for example, determines the known problems with convergence of complicated stochastic filters. Therefore, the method of integration of low cost SINS and GPS navigation that would eliminate the loss of non-linear relationships in the construction of optimal estimation procedures of navigation parameters in IS NS has been considered. The assumption of the algorithm is that a vehicle moves along the roads, the coordinates of which are reflected in navigation digital maps.

Download PDF

Keywords Integrated low cost MEMS ins and GPS navigation system; tightly coupled system; vehicle.
References 1. Голован А.А., Парусников Н.А. Математические основы навигационных систем. Ч. 1. Математические модели инерциальной навигации. – М.: МГУ, 2010. – 126 с.
2. Stentz T., Kelly A., Herman H., Rander P., Amidi O. Integrated Air/Ground Vehicle System for Semi-Autonomous Off-Road Navigation. – Carnegie Mellon University. – AUVSI Symposium, July 10, 2002. – P. 1-17.
3. Cannon M., Lachapelle G., Nayak R., Salychev O., Voronov V. Low Cost INS/GPS Integration: Concepts and Testing // The Journal of Navigation. – Royal Institute of Navigation. – 2001. – № 1 (54). – P. 9-13.
4. Saurabh G. Performance evaluation of low cost MEMS-based IMU integrated with GPS for land vehicle navigation. – Department of Geomatics Engineering, Calgary, Canada, 2006.
5. Демидов О.В. Задача тесной интеграции систем ГЛОНАСС и GPS с ИНС разных классов точности: Дисс. на соиск. степ. к.ф.-м.н. – М.: МГУ, 2009. – 139 c.
6. Фомичев А.А., Колчев А.Б., Ларионов П.В., Пугачев Р.В., Успенский Б.В. Комплексирование информации в интегрированной навигационной системе при неполном рабочем созвездии спутников // Гироскопия и навигация. – 2007. – № 1 (56). – С. 3-15.
7. Аникин А.А. Разработка и моделирование систем комплексирования разнородных наблюдений: Дисс. на соиск. степ. к.т.н. – Ульяновск: Ульяновский государственный технический университет, 2006. – 144 с.
8. Hide C., Moore T., Smith M. Adaptive Kalman filtering for low-cost INS/GPS // Journal of Navigation. – 2003. – № 1. – Р. 143-152.
9. Salycheva A. Medium accuracy INS/GPS integration in various GPS environments. Department of Geomatics Engineering Calgary, Canada, 2004.
10. Grewal M., Andrews A. Application of Kalman Filtering to GPS, INS, and Navigation: Notes / Kalman Filtering Consulting Associates. – Anaheim, CA. – 2000.
11. Hide C., Moore T., Smith M. Adaptive Kalman filtering for low-cost INS/GPS // Journal of Navigation. – 2003. – Vol. 56, № 1. – P. 143-152.
12. Щербань И.В., Щербань О.Г., Конев Д.С. Обобщенная модель подвижного объекта для реализации тесной интеграции разнородных навигационных систем // Автоматизация и современные технологии. – 2013. – № 2. – С. 24-29.
13. ГЛОНАСС. Принципы построения и функционирования / Под ред. А.И. Перова, В.Н. Харисова. – М: Радиотехника, 2010. – 800 с.
14. Щербань И.В., Щербань О.Г., Конев Д.С. Эффективный вычислительный алгоритм слабосвязанной инерциально-спутниковой навигационной системы транспортного средства // Мехатроника, автоматизация, управление. – 2015. – Т.16, № 2. – С. 133-139.
15. Thang N., Trinh C., Tan T. Application of Street Tracking Algorithm in a feedback configuration for an integrated INS/GPS navigation system // Lecture Notes in Electrical Engineering. – 2014. – Vol. 282 LNEE. – P. 279-288.
16. He R., Prentice S., Roy N. The belief roadmap: Efficient planning in linear POMDPs by factoring the covariance // Springer Tracts in Advanced Robotics. – 2010. – № 66 (STAR). – Р. 293-305.
17. Russel F. Berg. Estimation and prediction for maneuvering target trajectories // IEEE Transactions on Automatic Control. – 1983. – Vol. AC-28, № 3.
18. LSM303DLHC, http://www.st.com/web/en/resource/technical/ document/datasheet/ DM00027543.pdf.
19. L3G4200D, http://www.st.com/web/en/resource/technical/ document/datasheet/ CD00265057.pdf.
20. Распопов В.Я. Микромеханические приборы. – М.: Машиностроение, 2007. – 400 с.
21. Распопов В.Я., Матвеев В.В., Малютин Д.М. и др. Информационно-управляющие системы на микрогироскопах вращающихся по крену летательных аппаратов // Датчики и системы. – 2007. – № 4. – С. 8-11.
22. Распопов В.Я., Матвеев В.В. Основы построения бесплатформенных инерциальных навигационных систем. – СПб.: ГНЦ РФ ОАО Концерн ЦНИИ «Электроприбор», 2009. – 280 с.
23. Woodman O. An introduction to inertial navigation // Technical Report. – 2007. – № 696. – P. 1-37.
24. Приемник спутниковых сигналов "Геос 3(М)". http://www.premier-electric.com/ii/geostar.pdf.
25. Nassar S. Improving the Inertial Navigation System (INS) Error Model for INS and INS/DGPS Applications: Diss. Subm. PHD / Calgary: Alberta. – 2003. – 178 p.

Comments are closed.