Article

Article title RESEARCH OF GAS SENSITIVITY OF GRAPHENE FILMS ON SEMIINSULATING SILICON CARBIDE 6H–SIC TO NH3 AND VAPORS OF (CH3)2CH(OH)
Authors A.M. Svetlichnyy, M.N. Grigoriev, M.V. Demyanenko, I.L. Jityaev
Section SECTION II. TELECOMMUNICATION, ELECTRONICS AND NANOTECHNOLOGY
Month, Year 04, 2015 @en
Index UDC 621.373.8.002
DOI
Abstract Graphene is used as the gas sensitive layer of the gas sensor. Graphene films grown on semiconductive 6H–SIC by vacuum thermal degradation, enables to obtain of high quality films all along surface of the substrate. Topological pattern of the gas sensor was obtained after the plotting of dielectric film Al2O3 on top of the 6H–SIC through a mask, vacuum annealing at a temperature of 1300–14000C and manufacturing contacts to graphene. Gas sensitivity of the sensor and the dynamic characteristics was research and the dependence of desorption of NH3 and (CH3)2CH(OH) vapors from the sensor temperature was plotted for graphene films prepared at different temperatures. It was demonstrated, that graphene films obtained at an annealing temperature 13000C has almost two times higher sensitivity to NH3 at a concentration 100 ppm compared to the samples obtained at the annealing temperature 14000C. Sensitivity of graphene films to (CH3)2CH(OH) vapours at a concentration 100 ppm was almost four times higher compared to the samples obtained at the annealing temperature 14000C. The obtained results allow us to conclude that the obtained sensor elements are promising for the detection of small amounts of investigated gases.

Download PDF

Keywords Gas sensor; graphene; silicon carbide; desorption.
References 1. Schedin F., Geim A.K., Morozov S.V., Hill E.W., Blake P., et al. Detection of individual gas molecules adsorbed on grapheme, Nat Mater., 2007, Vol. 6, pp. 652-655.
2. Lu G., Ocola L.E., Chen J. Gas detectio using low–temperature reduced graphene oxide sheets, Appl Phys Lett., 2009, Vol. 94, pp. 83-111.
3. Geim A.K., Novoselov K.S. The rise of grapheme, Nat Mater., 2007, Vol. 6, pp. 183-191.
4. Gautam M., Jayatissa A.H. Gas sensing properties of graphene synthesized by chemical vapor deposition, Mater Sci Eng: C, 2011, Vol. 31, pp. 1405-1411.
5. Ni Z.H., Wang H.M., Kasim J., Fan H.M., Yu T., et al. Graphene thickness determination using reflection and contrast spectroscopy, Nano Lett., 2007, Vol. 7, pp. 2758-2763.
6. Li X., Cai W., An J., Kim S., Nah J., Yang D. et al. Large–area synthesis of high–quality and uniform graphene films on copper foils, Science, 2009, Vol. 324, pp. 1312-1314.
7. Jeong H.Y., Le D.S., Choi H.K., Lee D.H., et al. Flexible room–temperature NO[sub 2] gas sensors based on carbon nanotubes/reduced graphene hybrid films, Appl Phys Lett., 2010, Vol. 96, pp. 213105.
8. Ko G., Kim H.Y., Ahn J., Park Y.M., Kim J. Graphene–based nitrogen dioxide gas sensors, Curr Appl Phys., 2010, Vol. 10, pp. 1002-1004.
9. Dan Y., Lu Y., Kybert N.J., Luo Z. Intrinsic response of graphene vapor sensors, Nano Lett., 2009, Vol. 9, pp. 1472-1475.
10. Parkax, Ruoff R.S., Nat. Nanotechnol, 2009, Vol. 4, No. 4, pp. 217-224.
11. Forbeaux I., Themlin J.M., Debever J.M. Heteroepitaxial graphite on 6H–SiC(0001): Interface formation through conduction–band electronic structure, Phys. Rev. B, 1998, Vol. 58, pp. 16396-16406.
12. Parvizi F. [et al.] Graphene Synthesis via the High Pressure – High Temperature Growth Process, Micro & Nano Lett., 2008, Vol. 3, pp. 29-34.
13. Hass J., W.A. de Heer, Conrad E.H. The growth and morphology of epitaxial multilayer grapheme, J. Phys.: Condens. Matter., 2008, Vol. 20, pp. 3232-3240.
14. Lee J.K., Yamazaki S., Yun H. et al. Modification of Electrical Properties of Graphene by Substrate–Induced Nanomodulation, Nano Lett., 2013, No. 13 (8), pp. 3494-3500.
15. Konakova R.V., Kolomys A.F., Okhrimenko O.B., Strel'chuk V.V., Volkov E.Yu., Grigor'ev M.N., Svetlichnyy A.M., Spiridonov O.B Sravnitel'nye kharakteristiki spektrov kombinatsionnogorasseyaniya sveta plenok grafena na provodyashchikh i poluizoliruyushchikh podlozhkakh 6H–SiC [Comparative characteristics of the spectra of combination.paroxetine light graphene films on conductive and politology substrate 6H–SiC], Fizika i tekhnika poluprovodnikov [Physics], 2013, Vol. 47, Issue 6.
16. Svetlichnyy A.M., Grigor'ev M.N., Dem'yanenko M.V., Zhityaev I.L. Gazochuvstvitel'-nost' plenok grafena na poluizoliruyushchem SiC k NO2 i param C2H5OH [Gas sensitivity of graphene films on palusalue SiC to NO2, C2H5OH and couples], Inzhenernyy vestnik Dona [Engineering journal of Don], 2013, No. 2. Available at: http://ivdon.ru/magazine/archive/
n2y2013/1735, 5 p. (accessed 11 January 2015).
17. Johnson J.L., Behnam A., An Y., Pearton S.J., Ural A. Experimental study of graphitic nanoribbon films for ammonia sensing, J Appl Phys., 2011, Vol. 109, pp. 124-301.
18. Bozhinova A.S., Kaneva N.V., Kononova I.E., i dr. Izuchenie fotokataliticheskikh i sensornykh svoystv nanokompozitnykh sloev ZnO/SiO2 [The study of photocatalytic and sensory properties of nanocomposite layers ZnO/SiO2], Fizika i tekhnika poluprovodnikov [Physics], 2013, Vol. 47, Issue 12.

Comments are closed.