Article

Article title CONDITIONAL ACCESS SYSTEM EFFICIENCY INCREASING AT DISPATCH OF A GROUP KEY
Authors V.T. Кornienko
Section SECTION IV. SECURITY OF TELECOMMUNICATION SYSTEMS
Month, Year 05, 2015 @en
Index UDC 681.3.016
DOI
Abstract The purpose is to examine ways to improve efficiency of key information dispatching in the conditional access system. The problem is solved using the Reed-Mahler codes. The applications of Reed-Muller coding in noisy channels of communication systems and procedures for key generation was denoted. Attached to the common scrambling algorithm (CSA), comprising key distribution and transmission of encrypted messages of access control and conditional access without scrambling, the use of first order Reed-Muller code is considered to encode the stream of key information. It deals with Reed-Muller codes application for improving unauthorized decryption effort and high error correction ability in information decoding. One of possible variants of a majority way of decoding was described. It is pointed that multilevel key hierarchy was applied to reduce the cost of rekeying. The paralleling encoding process was proposed as multi-level hierarchy encoding which consists in to reduce the Reed-Muller codeword length and improve code rate with specified requirements for the probability error. The odd of winning in reducing dispatches keys depending on the number of subscribers for the four-tier hierarchy is introduced. Simulation results of the Reed-Mahler codeword length, the number of corrected bits, the probability error and the code rate versus the number of data bits for four hierarchical levels were illustrated. As a result of the LabVIEW virtual devices experiment, which are carrying out for represented parameters of code, simulation output was represented. It is introduced that library modules for Reed-Muller encoder&decoder realization by LabVIEW means were created.

Download PDF

Keywords Conditional access system; group key dispatch; Reed-Muller codes; multilevel key distribution; LabVIEW virtual device.
References 1. Cruickshank H., Howarth M.P., Iyengar S., Sun Z. A Comparison between satellite DVB conditional access and secure IP multicast, ESA Contract 16996/02/NL/US Octalis, 2003.
2. Neydorf R.A., Novikov S.P., Chudakov V.S. Prakticheskaya metodika rascheta dannykh dlya vybora printsipov kodirovaniya i ikh parametrov v zashumlennykh kanalakh svyazi setetsen-tricheskikh sistem [Practical design procedure of the data for the choice of principles of coding and their parameters in communication channels with noise of setetsentrichesky systems], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 3 (116), pp. 109-120.
3. Yaremenko A.V., Osokin A.N. Realizatsiya turbokodeka na programmiruemoy logicheskoy integral'noy skheme [Implementation of turbocodes on programmable logic integrated circuit], Vestnik nauki Sibiri. Ser. 6. Informatsionnye tekhnologii i sistemy upravleniya [Journal of science of Siberia. Series 6. Information technology and systems management], 2011, No. 1 (1).
4. Zyablov V.V., Rybin P.S. Sravnenie metodov peredachi po parallel'nym kanalam [Comparison of methods of transmission over parallel channels], Trudy 30-y konferentsii molodykh uchenykh i spetsialistov IPPI RAN im. A.A. Kharkevicha Rossiyskoy akademii nauk «Informatsionnye tekhnologii i sistemy» (ITiS’07) [Proceedings of the 30th conference of young scientists and experts of the Institute. A.A. Kharkevich, Russian Academy of Sciences "Information technologies and systems (ITAS'07)]. Moscow: IPPI RAN, 2007, pp. 99-103.
5. Chizhov I.V. Ekvivalentnye podprostranstva koda Rida–Mallera i prostranstvo klyuchey kriptosistemy Mak–Elisa–Sidel'nikova [Equivalent subspace code, reed–Muller and the space key cryptosystem Mac–ELISA–Sidelnikova ], Tezisy dokladov VIII Sibirskoy nauchnoy shkoly-seminara s mezhdunarodnym uchastiem. Komp'yuternaya bezopasnost' i kriptografiya – SIBECRYPT’09, 2009 [Abstracts of the VIII Siberian scientific school-seminar with international participation. Computer security and cryptography – SIBECRYPT’09, 2009], pp. 36-38.
6. Chizhov I.V. Klyuchevoe prostranstvo kriptosistemy Mak–Ellisa–Sidel'nikova [The key space of the cryptosystem Mac–Ellis–Sidelnikova], Diskretnaya matematika [Diskretnaya Matematika], 2009, Vol. 21 (3), pp. 132-158.
7. Rukovodstvo po nastroyke, ustanovke i ekspluatatsii radiomodema granit R-43ATs. OOO» Radiokommunikatsionnye sistemy» [Setup guide, installation and operation of radio granite P-AC. LTD." radio communication system"].
8. Bikkenich R.R., Khvorov S.D. Pomekhoustoychivost' sistemy s psevdosluchaynymi signalami i kodom Rida-Mallera [Immunity system with pseudorandom signals and code reed-Muller], Telekommunikatsii [Telecommunications], 2011, No. 11, pp.42-48.
9. Romashchenko A.E., Rumyantsev A.Yu., Shen' A.A. Zametki po teorii kodirovaniya [Notes on coding theory]. Moscow: MTsNMO, 2011, 80 p.
10. Solov'eva F.I. Vvedenie v teoriyu kodirovaniya: Uchebnoe posobie [Introduction to coding theory: tutorial]. Novosibirsk: Novosibirskiy gos. universitet, 2006, 127 p.
11. Richard D. van Nee OFDM codes for peak-to-average power reduction and error correction, IEEE Globecom, London, U.K., 1996, pp. 740-744.
12. Davis J.A., Jedwab J. Peak-to-mean power control and error correction for OFDM transmission using Goley sequences and Reed–Muller codes, Electron. Lett., 1997, Vol. 33, pp. 267-268.
13. Sidel'nikov V.M. Otkrytoe shifrovanie na osnove dvoichnykh kodov Rida–Mallera [Open encryption based on binary reed–Muller codes], Diskretnaya matematika [Diskretnaya Matematika], 1994. Vol. 6, Issue 3, pp. 3-20.
14. Chizhov I.V. Prostranstvo klyuchey kriptosistemy Mak–Elisa–Sidel'nikova: Avtoref. diss. kand. fiz.-mat. nauk [Space key cryptosystem Mac–ELISA–Sidelnikov: abstract. cand. phys. and math. sci. diss. Moscow, 2010.
15. Canteaut A., Carlet C., Charpin P., Fontaine C. On cryptographic properties of the cosets, IEEE Trans. Inf. Theory, 2001, Vol. 47, No. 4, pp. 1949-1513.
16. Borodin M., Chizhov I. Effektivnaya ataka na kriptosistemu Mak–Elisa, postroennuyu na osnove kodov Rida–Mallera [An effective attack on the cryptosystem Mac–ELISA, based on reed–Muller codes], Diskretnaya matematika [Diskretnaya Matematika], 2014, Vol. 1, No. 26, pp. 10-20.
17. Morelos–Saragosa R. Iskusstvo pomekhoustoychivogo kodirovaniya. Metody, algoritmy, primenenie [The art of error-correcting coding. Methods, algorithms, application]. Moscow: Tekhnosfera, 2005, 320 p.
18. Helleseth T., Klove T., Levenshtein V. I. Error-correction capability of binary linear codes, IEEE Trans. Inf. Theory, 2005, Vol. 51, No. 4, pp. 1408-1423.
19. Kenji Yasunaga, Toru Fujiwara. On Correctable Errors of Binary Linear Codes, IEEE Transactions on information theory, 2010, Vol. 56, No. 6, pp. 2537.
20. Alexander J. Grant, Richard D. van Nee. Efficient Maximum-Likelihood Decoding of Q-ary Modulated Reed–Muller Codes, IEEE Communications letters, 1998, Vol. 2, No. 5, pp. 134-138.
21. Dumer I., Kabatiansky G., Tavernier C. Fast list decoding of Reed–Muller codes up to their distances, Proc. XI Int. Workshop Algebraic and Combinatorial Coding Theory, Pamporovo, Bulgaria. 2008, pp. 82-85.
22. Dumer I., Kabatiansky G., Tavernier C. List decoding of Reed–Muller codes up to the Johnson bound with almost linear complexity, Proc. 2006 IEEE Int. Symp. Information Theory, USA. 2006, pp. 138-142.
23. Kabatiansky G., Tavernier C. List decoding of Reed–Muller codes of the first order, Proc. IX Int. Workshop Algebraic and Combinatorial Coding Theory, Kranevo, Bulgaria. 2004, pp. 230-235.
24. Paterson K.G., Jones A.E. Efficient decoding algorithms for generalized Reed–Muller codes, Technical Report HPL-98-195. Hewlett–Packard Labs., Bristol, 1998.
25. Ashikhmin, Litsyn S.N. Fast decoding algorithms for first order Reed–Muller and related codes, Desifn, Codes and Cryptography, 1996, Vol. 7, pp. 187-214.
26. Kornienko V.T. Ispol'zovanie virtual'nykh priborov LabVIEW v uchebnom protsesse dlya skremblirovaniya tsifrovogo potoka dannykh [Application of labview virtual devices in educational process for scrambling of digital data flow], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 11 (148), pp. 182-186.
27. Kornienko V.T. Otsenka koeffitsienta szhatiya kodera Khaffmana v virtual'nom laboratornom eksperimente LabVIEW [Evaluation of the compression ratio of the Huffman encoder in the virtual laboratory experiment LabVIEW], Sbornik nauchnykh trudov po itogam mezhdunarodnoy nauchno-prakticheskoy konferentsii «Novye tekhnologii i problemy tekhnicheskikh nauk» [Proceedings of the international scientific-practical conference "New technologies and problems of technical Sciences"]. Krasnoyarsk, 2014, pp. 107-110.
28. Kornienko V.T. Povyshenie effektivnosti peredachi dannykh v sistemakh s interfeysom Wiegand [Improving the efficiency of data transmission in systems with Wiegand interface], Sbornik nauchnykh trudov po itogam Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Tekhnicheskie nauki v mire: ot teorii k praktike» [Proceedings of the International scientific-practical conference "Technical Sciences in the world: from theory to practice"]. Rostov-on-Don, 2014, pp. 67-69.

Comments are closed.