Article

Article title ADVERSE EVENTS TREES MODELING OF TECHNICAL OBJECTS VIA SYSTEM OF LINEAR NUMERICAL POLYNOMS WITH MASKING
Authors I.V. Chechin
Section SECTION V. CONCEPTUAL AND APPLIED ISSUES OF INFORMATION SECURITY
Month, Year 05, 2015 @en
Index UDC 004.94
DOI
Abstract Use of systems of the linear arithmetical polynomials with masking for the analysis of approach of unfavorable events on technical object is considered. Need of application of the linear arithmetical polynomials with masking is dictated by objective requirements to efficiency of obtaining information on events on technical object (including about localization of the refused elements and subsystems). Obtaining this information is connected to calculation of logical expressions of the unfavorable statuses of controlled object (trees of events) describing scenarios of development. At high complexity and a large number of scenarios duration of calculations of logical values can exceed an interval of time of development of adverse events. Information on adverse events on technical object can be received by consecutive calculation of linear arithmetic polynoms of each level of hierarchical structure of a tree of events. Thus as entrance arguments for calculation of the polynom corresponding to the current level of a tree results of calculations of the polynom corresponding to the underlying level of a tree are used. Key indicator of the applied linear arithmetic polynoms is their small length which allows to reduce time necessary for realization of a tree of adverse events. It, in the turn, allows to reduce time of determination of current state of object of control. Application of the linear polynomials with masking allows to increase the speed of calculation of values of system of boolean functions approximately by 50 times in comparison with sequential calculation of values of boolean functions of system. The gain in time of calculations increases in process of increase in number of the controlled initiating events, number boolean functions at the level of a tree and number of levels of a tree.

Download PDF

Keywords Linear numerical polynomials with masking; technical objects reliability and safety; parallel realization of Boolean system functions; mathematical supply of SCADA.
References 1. Vishnevskiy A.K., Sharay V.A. Realizatsiya operatsii podstanovki lineynymi chislovymi polinomami [Realization of operation of substitution by the linear numerical polynoms], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2010, No. 11 (112), pp. 139-148.
2. GOST 27.302–2009. Nadezhnost' v tekhnike. Analiz dereva neispravnostey [State Standard 27.302–2009. Reliability in engineering. Analysis of the fault tree]. Moscow: Standartinform, 2012.
3. GOST R 22.1.12–2005. Bezopasnost' v chrezvychaynykh situatsiyakh. Strukturirovannaya sistema monitoringa i upravleniya inzhenernymi sistemami zdaniy i sooruzheniy. Obshchie trebovaniya [State Standard R 22.1.12–2005. Safety in emergency situations. Structured system for monitoring and control of engineering systems of buildings and structures. General requirements]. Moscow: Standartinform, 2005, 16 p.
4. Dichenko S.A., Vishnevskiy A.K., Fin'ko O.A. Realizatsiya dvoichnykh psevdosluchaynykh posledovatel'nostey lineynymi chislovymi polinomami [Implementation of binary linear pseudorandom numerical polynomials], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 12 (125), pp. 130-140.
5. Dichenko S.A., Fin'ko O.A. Algoritm generatsii blochnoy PSP, osnovannyy na primenenii logiko-chislovykh form [Algorithm for generating pseudorandom sequence of block based on the use logical-numeric form], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No. 12 (137), pp. 158-167.
6. Kondrat'ev V.N., Shalyto A.A. Realizatsiya bulevykh funktsiy odnim lineynym arifmeticheskim polinomom s maskirovaniem [Implementation of Boolean functions one linear polynomial arithmetic with masking], Avtomatika i telemekhanika [Automation and Remote Control], 1996, Issue 1, pp. 158-170.
7. Kondrat'ev V.N., Shalyto A.A. Realizatsiya sistem bulevykh funktsiy lineynymi arifmeticheskimi polinomami s maskirovaniyami [Realization of systems of Boolean functions linear arithmetic polynomials with maskirovanija], Avtomatika i telemekhanika [Automation and Remote Control], 1997, Issue 3, pp. 200-215.
8. Malyugin V.D. Parallel'nye logicheskie vychisleniya posredstvom arifmeticheskikh polinomov [Parallel logic computation by the arithmetic of polynomials]. Moscow: Nauka. Fizmatlit, 1997.
9. Ryabinin I.A. Nadezhnost' i bezopasnost' strukturno-slozhnykh system [The reliability and safety of structurally complex systems]. St. Petersburg: Politekhnika, 2000, 248 p.
10. Sokolovskiy E.P., Malashikhin A.K., Fin'ko O.A. Primenenie chislovoy normal'noy formy predstavleniya bulevykh funktsiy v logiko-veroyatnostnom metode I.A. Ryabinina [The use of numerical normal form representation of Boolean functions in logical-probabilistic method I. A. Ryabinin], Informatsionnoe protivodeystvie ugrozam terrorizma [Information Counteraction to the Terrorism Threats], 2014, Vol. 22, Issue 22, pp. 22-31.
11. Fin'ko O.A. Realizatsiya sistem bulevykh funktsiy bol'shoy razmernosti metodami mo-dulyarnoy arifmetiki [Realization of systems of Boolean functions of high dimensionality methods of modular arithmetic], Avtomatika i telemekhanika [Automation and Remote Control], 2004, Issue 6, pp. 37-60.
12. Fin'ko O.A., Sokolovskiy E.P. Algoritm otsenki riska informatsionnoy bezopasnosti v sistemakh zashchity informatsii na osnove logiko-veroyatnostnogo metoda I.A. Ryabinina [Risk assessment information security algorithm is based on the i. Ryabinin logical-probabilistic method], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 12 (149), pp. 172-180.
13. Sharay V.A., Burangulova O.S., Andriutsa M.V. Monitoring sostoyaniya nadezhnosti i bezopasnosti strukturno-slozhnykh sistem na osnove logiko-chislovykh modeley [Monitoring the condition to reliability and safety structured-complex systems on base logician-numeric models], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 12 (125), pp. 35-49.
14. Sharay V.A., Rzhevskiy D.I., Ryskin D.Yu. Sistemnyy analiz, otsenka kachestva monitoringa sostoyaniya nadezhnosti i bezopasnosti slozhnykh tekhnicheskikh sistem [System analysis, quality assessment, condition monitoring reliability and safety of complex technical systems], Sbornik trudov IV-V Vserossiyskoy NTK «Informatsionnaya bezopasnost' – aktual'naya problema sovremennosti» g. Gelendzhik, 2012 [Proceedings of the IV-V all-Russian research Institute of Information security – urgent problem of our time" Gelendzhik, 2012]. Krasnodar: FVAS, 2012, pp. 22-26.
15. Aiken H.H. Synthesis of electronic Computing and Control Circuits. Cambridge, The Annals of the Computation Laboratory of Harvard University. Massachusetts: Harvard University, 1951, Vol. XXVII.
16. Finko O., Dichenko S. Secure pseudo-random linear binary sequences generators based on arithmetic polynoms, In: Soft computing in computer and information science. – Springer International Publishing, 2015, Vol. 342, Part III, pp. 279-290. doi: 10.1007/978-3-319-15147-2_24.
17. Yanushkevich S.N., Smerko V.P., Lyshevski S.E. Logic Design of NanoICS. CRC Press, 2004, 488 p.
18. Yanushkevich S.N., Miller D.M., Smerko V.P., Stankovic R.S. Decision Diagram Techniques for Micro- and Nanoelectronic Design. CRC Press, 2005, 952 p.
19. Yanushkevich S.N., Smerko V.P. Introduction to logic design. CRC Press, 2008, 720 p.
20. Yanushkevich S.N., Smerko V.P., Lyshevski S.E. Computer Arithmetics for Nanoelectronics. CRC Press, 2009, 780 p.

Comments are closed.