Authors A.N. Popov, N.A. Zelenina
Month, Year 05, 2015 @en
Index UDC 681.51
Abstract The decision of the majority of tasks, assigned to satellites, can`t be performed without implementation of an orbital maneuvering. The orbital maneuvering is any purposeful change of an orbit of a satellite. Pulse maneuvers, involving the creation of instant thrust vector using thrusters at certain points of the orbit motion of the satellite, received the most widely advancement. The pulse approach has several limitations: the dependence of optimality of flight from the radius and the angle of inclination of the final orbit, the need to carryout maneuvering in points of the orbit, where the satellite speed is minimal, for optimum fuel consumption, and others. The application of the principles and methods of synergetic control theory for the synthesis of control algorithms of satellites that provide implementation of desired orbital maneuvers is considered in this article. The procedures of the synergistic synthesis for the case of preservation the plane of the initial orbit (coplanar maneuvering) and for the case of transition from the initial orbital plane to another plane (spatial maneuvering) are represented. Parameters of the desired orbit (radius, eccentricity and rotation angles of the orbital plane relative to the equatorial plane) are defined as the corresponding invariants of motion of a closed system, which in turn are part of the structure formed during the synthesis procedure of attracting invariant manifolds. The invariants of Keplerare used as invariants of motion of satellites that lets to say about the conformity of the developed algorithms with the natural physical laws. The carried out computer modeling fully confirms the theoretical conclusions. The proposed algorithms provide asymptotically stability of the process of the orbital maneuvering and are deprived of known deficiencies of the impulse maneuvering.

Download PDF

Keywords Artificial earth satellite; orbital maneuvering; synergetic synthesis; motion invariants.
References 1. Kaplan, Marshall H. Modern Spacecraft Dynamics and Control. New York, NY: Wiley & Sons. 1976.
2. Der-RenTaur, Victoria Coverstone-Carroll, John E. Prussing. Optimal Impulsive Time-Fixed Orbital Rendezvous and Interception with Path Constraints, Journal of Guidance, Control, and Dynamics, 2012, No. 18:1, pp. 54-60.
3. Dong-Yoon Kim, Byoungsam Woo, Sang-Young Park, Kyu-Hong Choi. Hybrid optimization for multiple-impulse reconfiguration trajectories of satellite formation flying, Advances in Space Research, 2009, No. 44. pp. 1257-1269.
4. Thomas Carter, Sergio Alvarez. Four-impulse rendezvous near circular orbit. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2012.
5. Burdaev M.N. Manevr izmeneniya polozheniya ISZ na krugovoy orbite s ispol'zovaniem podderzhivayushchego uskoreniya [The maneuver changes the position of the satellite in a circular orbit using acceleration support], Programmnye sistemy: teoriya i prilozheniya [Program systems: Theory and Applications], 2013, No. 4 (18), pp. 3-15.
6. Levantovskiy V.I. Mekhanika kosmicheskogo poleta v elementarnom izlozhenii: Monografiya [Mechanics of space flight in an elementary statement: Monograph]. Moscow: Nauka, 1980, 512 p.
7. Okhotsimskiy D.E., Sikharulidze Yu.G. Osnovy mekhaniki kosmicheskogo poleta: Monografiya [Fundamentals of mechanics of space flight: a Monograph]. Moscow: Nauka, 1990, 448 p.
8. Ivanov N.M., Lysenko L.N. Ballistika i navigatsiya kosmicheskikh apparatov: Monografiya [Ballistics and navigation of space vehicles: Monograph]. Moscow: Drofa, 2004, 540 p.
9. Roy A. Dvizhenie po orbitam [Motion in orbits]. Moscow: Mir, 1981, 544 p.
10. Hiller H. Optimum transfers between non – complanar circular orbits, Planetary and Space Science, 1965, Vol. 13, No. 2.
11. Kolesnikova A.A. Sinergeticheskaya teoriya upravleniya [Synergetic control theory]. Moscow: Energoatomizdat, 1994, 344 p.
12. Kolesnikov A.A. Sinergeticheskie metody upravleniya slozhnymi sistemami: teoriya sistemnogo sinteza [Synergetic methods of control of complex systems: the theory of system synthesis]. 2nd ed. Moscow: Knizhnyy dom «LIBROKOM», 2013, 240 p.
13. Shternfel'd A. Iskusstvennye sputnik [Artificial satellites]. 2nd ed. Moscow: Gostekhizdat, 1958, 296 c.
14. Hitzl D.L. Computer illustration of Earth satellite orbits, J. Spacecraft and Rockets, 1974, Vol. 11, No. 5 (AP, 1974, Mo. 33).
15. Beletskiy V.V. Dvizhenie iskusstvennogo sputnika otnositel'no tsentra mass [The motion of an artificial satellite about its center of mass]. Moscow: Nauka, 1965, 416 c.
16. Chobotov V. Orbital Mechanics. Reston, Virginia, American Institute of Aeronautics and Astronautics, 2002.
17. Vallado D.A. Fundamentals of Astrodynamics and Applications. Microcosm Press, Hawthorne, CA, 2007.
18. Kolesnikov A.A., Veselov G.E., Popov A.N., Kolesnikov Al.A., Topchiev B.V., Mushenko A.S., Kobzev V.A. Sinergeticheskie metody upravleniya slozhnymi sistemami: Mekhanicheskie i elektromekhanicheskie sistemy [Synergetic methods of control of complex systems: Mechanical and Electromechanical systems], 304 p.
19. Kolesnikov A.A. Sinergeticheskaya teoriya upravleniya: kontseptsii, metody, tendentsii razvitiya [Synergetic control theory: concepts, methods, trends], Izvestiya TRTU [Izvestiya TSURe], 2001, No. 5 (23), pp. 7-27.
20. Popov A.N., Zelenina N.A. Sinergeticheskiy sintez sistem orbital'nogo manevrirovaniya kosmicheskikh apparatov [Synergetic synthesis systems orbital maneuvering spacecraft], Materialy V Mezhdunarodnoy nauchnoy konferentsii «Sistemnyy sintez i prikladnaya sinergetika» [Materials of V International scientific conference "System synthesis and applied synergetics"]. Pyatigorsk. FGAOU VPO «SKFU» (filial) v g. Pyatigorske 2013. V 3-kh vol. Vol. 2, pp. 88-93.
21. Kolesnikov A.A. Sinergeticheskaya kontseptsiya sistemnogo sinteza: edinstvo protsessov samoorganizatsii i upravleniya [Synergetic concept of system synthesis: the unity of the processes of self-organization and management], Izvestiya TRTU [Izvestiya TSURe], 2006, No. 6 (61), pp. 10-38.
22. Kolesnikov A.A. Analiticheskoe konstruirovanie nelineynykh agregirovannykh regulya-torov po zadannoy sovokupnosti invariantnykh mnogoobraziy. I. Skalyarnoe upravlenie [Analytical design of nonlinear aggregated regulators on a predetermined number of invariant manifolds. I. Scalar control], Elektromekhanika [Electrical Engineering], 1987, No. 3.
23. Sabatini M., Bevilacqua R., Pantaleoni M., Izzo D. A Search for Invariant Relative Satellite Motion, accepted for publication in Journal of Non Linear Dynamics and Systems, also Proceedings of the 4th Workshop on Satellite Constellations and Formation Flying, Sao Jose Dos Campos, Brazil, 14-16 February 2005, pp. 222-229.

Comments are closed.