Authors V.V. Kureichik, D.V. Zaruba, D.Y. Zaporozgets
Month, Year 06, 2015 @en
Index UDC 004.896
Abstract Currently, the problem of parametric optimization are widely used in various fields of science and technology. These problems include weather forecasting, the calculation of various parameters of electric motors, as well as finding the weight coefficients in the neural network. The problem relates to the class of NP-hard and is not deterministic algorithms to solve it. Therefore, the development of promising heuristic methods to obtain quasi-optimal solutions in polynomial time. The article deals with the problem of parametric optimization of technical objects. From a mathematical point of view the process of parametric optimization is reduced to the problem of global conventional continuous optimization. Shows the formulation of the problem of parametric optimization. To solve this problem developed a stochastic algorithm based on the model of behavior of the swarm of fireflies. Roy is regarded as a multi-agent system where each agent operates autonomously on a fairly primitive rules. The basis of the behavior of a swarm of self-organization, ensuring the achievement of common objectives based on a swarm of low-level interaction. Roy does not have a centralized management. Its features include direct and indirect exchange of information between local individuals. The set of relatively simple agents strategy builds its behavior without global governance. The developed method is based on creating a dynamic decision-making of each agent that is guaranteed to find all the local optima of the objective function in polynomial time. For the analysis of this method, a series of experiments. The data obtained confirmed the theoretical evaluation, and possible to establish the optimal parameters of the algorithm. Conducted a series of tests and experiments have shown promising application of this approach.

Download PDF

Keywords Parametric optimization; swarm optimization methods; bioinspired search.
References 1. Gladkov L.A., Kureychik V.V., Kureychik V.M., Sorokoletov P.V. Bioinspirirovannye metody v optimizatsii [Bioinspired methods in optimization]. Moscow: Fizmatlit, 2009, 384 p.
2. Gladkov L.A., Kureychik V.V., Kureychik V.M. Geneticheskie algoritmy [Genetic algorithms]. Moscow: Fizmatlit, 2010, 368 p.
3. Kureychik V.V., Kureychik V.M., Rodzin S.I. Teoriya evolyutsionnykh vychisleniy [The theory of evolutionary computation]. Moscow: Fizmatlit, 2012, 260 p.
4. Abraham A., Grosan G., Ramos V. Swarm Intelligence in Data Mining. Berlin. Heidelberg: Springer Verlag, 2006, 267 p.
5. Dorigo M., Maniezzo V., Colorni A. Ant System: Optimization by a Colony of Cooperating Agents, IEEE Transactions on Systems, Man, and Cybernetics-Part B., 1996, No. 26 (1), pp. 29-41.
6. Kureychik V.V., Zaporozhets D.Yu. Roevoy algoritm v zadachakh optimizatsii [Swarm algorithm in optimisation promlems], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2010, No. 7 (108), pp. 28-32.
7. Bel'kov V.N., Lanshakov V.L. Avtomatizirovannoe proektirovanie tekhnicheskikh sistem: Uchebnoe posobie [Automated design of technical systems: a tutorial]. Moscow: Izd-vo "Akademiya estestvoznaniya", 2009, 143 p.
8. Kureychik V.V., Zaporozhets D.Yu. Sovremennye problemy pri razmeshchenii elementov SBIS [Modern placement’s problems of VLSI], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 7 (120), pp. 68-73.
9. Kureychik V.V., Kureychik Vl.Vl. Arkhitektura gibridnogo poiska pri proektirovanii [The architecture of hybrid search for design], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No. 7 (132), pp. 22-27.
10. Krishnanand K.N. and Ghose D. Multimodal Function Optimization Using a Glowworm Metaphor with Applications to Collective Robotics, Proceedings of the Second Indian International Conference on Artificial Intelligence, Pune, India, December 2005, pp. 328-346.
11. Krishnand K.N., Ghose D. Glowworm swarm optimisation: A new method for optimizing multimodal functions, Int. J. Computational Intellingence Studies, 2009, No. 1 (1), pp. 93-119.
12. Tyler J. Glow-worms. Available at: http:// ˜galaxypix/ Tylerbookpt1.html.
13. Hongxia Liu, Shiliang Chen, Yongquan Zhou. A novel hybrid optimization algorithm based on glowworm swarm and fish school, Journal of Computational Information Systems, 2010, No. 6 (13), pp. 4533-4542.
14. Piotr and Oramus. Improvements to glowworm swarm optimization algorithm, Computer Science, 2010, No. 11, pp. 7-20.
15. Karpenko A.P. Populyatsionnye algoritmy global'noy poiskovoy optimizatsii. Obzor novykh i maloizvestnykh algoritmov [Population Algorithms for Global Continuous Optimization. Review of New and Little-Known Algorithms], Informatsionnye tekhnologii [Information Technologies], 2012, No. 7, pp. 1-32.
16. Karpenko A.P. Gibridnye populyatsionnye algoritmy parametricheskoy optimizatsii proektnykh resheniy [Hybrid population-based algorithms for parametric optimization of design solutions], Informatsionnye tekhnologii [Information Technologies], 2013, No. 12, pp. 6-15.
17. Gladkov L.A., Kureichik V.V., Kravchenko Y.A. Evolutionary algorithm for extremal subsets comprehension in graphs, World Applied Sciences Journal, 2013, pp. 1212-1217.
18. Kacprzyk J., Kureichik V.M., Malioukov S.P., Kureichik V.V., Malioukov A.S. Experimental investigation of algorithms developed, Studies in Computational Intelligence, 2009, No. 212, pp. 211-223+227-236.
19. Parsopoulos K.E. and Vrahatis M.N. Modification of the particle swarm optimizer for locating all the global minima, in: Artificial Neural Networks and Genetic Algorithms, V. Kurkova, N. Steele, R. Neruda and M. Karny, eds, Wien, Germany: Springer-Verlag, 2001, pp. 324-327.
20. Stutzle T.and Dorigo M. A short convergence proof for a class of ant colony optimization algorithms, IEEE Transactions on Evolutionary Computation, 2002, No. 6, pp. 358-365.

Comments are closed.