Article

Article title THE PROCESS OF PREPARATION AND ADOPTION OF SOLUTIONS
Authors S.N. Shсheglov
Section SECTION III. COMPUTER-AIDED DESIGN
Month, Year 06, 2015 @en
Index UDC 681.3.001.63
DOI
Abstract In operation the modified approach to the preparation and adoption of solutions for the problems of design and management. Currently the development of new theories, principles, and on their basis construct the integrated mathematical models and methods for effective decision making. This is especially true in high-tech fields, such as those associated with the implementation of a bioinspired, information, nuclear, nanotechnology, automation, design and management. In this case it is important to have a set of informational intelligent systems for decision support, focused on a defined subject area. For reliability of solutions using a multivariate approach, based on a comparison of sets of possible solutions. The decision support can be viewed as the process of representing a continuous stream of action from the stage of submission to the design and choice. The block diagram of decision making. This approach is used to build new information technologies the selection of optimal and quasi-optimal results in relation to the problems of design and management. The decision support requires working not only with the data or with information, but with information models, knowledge and expert systems. In this case the basis of the analysis and decisions can be informational and evolutionary modeling, genetic search, adaptation. The scheme of a combined search of solving the problem of placing circuit elements VLSI, built on the basis of the above principles. Given the requirements for constructing algorithms design, based on methods inspired by nature. Considered the algorithm of placing circuit elements of VLSI based on the behavior of colonies of bees. Given the computational experiments.

Download PDF

Keywords Management; design automation; model; algorithm; optimum; computational experiments; graph models; decision making; search; system
References 1. Petrovskiy A.B. Teoriya prinyatiya resheniy [The decision theory]. Moscow: Akademiya, 2009, 400 p.
2. Pospelov D.A. Dannye i znaniya. Iskusstvennyy intellect [Data and knowledge. Artificial intelligence]. In 3 books. Books 1. Moscow: Radio i svyaz', 1990,464 p.
3. Norenkov I.P. Osnovy avtomatizirovannogo proektirovaniya. Uchebnik dlya VUZov [Fundamentals of CAD. Textbook for Universities]. Moscow: Izd-vo MGTU im. N.E. Baumana, 2009. 432 p.
4. Alpert Ch., Mehta D.P., Sapatnekar S.S. Handbook of Algorithms for Physical design Automation. New York: Boca Raton, 2009.
5. Kureychik V.M., Kureychik V.V. Evolyutsionnye, sinergeticheskie i gomeostaticheskie strategii v iskusstvennom intellekte: sostoyanie i perspektivy [Evolutionary, synergistic and homeostatic strategy in artificial intelligence: state and prospects], Novosti iskusstvennogo intellekta [News of Artificial Intelligence], 2000, No. 3, pp. 39-67.
6. Gavrilova T.A. Khoroshevskiy V.F. Bazy znaniy intellektual'nykh sistem. – St. Petersburg: Piter, 2000, 384 p.
7. Malyshev V.V., Piyavskiy B.S., Piyavskiy S.A. Metody prinyatiya resheniy v usloviyakh mnogoobraziya sposobov ucheta neopredelennosti [Methods of decision making in a variety of ways of accounting for the uncertainty], Izvestiya RAN. Teoriya i sistemy upravleniya [Journal of Computer and Systems Sciences International], 2010, No. 1, pp. 46-61.
8. Kureychik V.M., Lebedev B.K., Lebedev V.B. Planirovanie sverkhbol'shikh integral'nykh skhem na osnove integratsii modeley adaptivnogo poiska [The planning of very large integrated circuits based on the integration of adaptive search models], Izvestiya RAN. Teoriya i sistemy upravleniya [Journal of Computer and Systems Sciences International], 2013, No. 1, pp. 84-101.
9. Gladkov L.A, Kureichik V.V., Kravchenko Yu.A. Evolutionary Algorithm for Extremal Subsets Comprehension in Graphs, World Applied Sciences Journal, 2013, No. 24 (14), pp. 1212-1217.
10. Kureychik V.M., Kureychik V.V., Rodzin S.I. Kontseptsiya evolyutsionnykh vychisleniy, inspirirovannykh prirodnymi sistemami [Concept evolutionary computation is inspired by natural systems], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2009, No. 4 (93), pp. 16-25.
11. Kureychik V.M., Lebedev B.K., Lebedev O.B. Gibridnyy algoritm razbieniya na osnove prirodnykh mekhanizmov prinyatiya resheniy [A hybrid algorithm for clustering based on natural mechanisms of decision-making], Iskusstvennyy intellekt i prinyatie resheniy [Artificial intelligence and decision making]. Moscow: Izd-vo Institut sistemnogo analiza RAN, 2012, pp. 3-15.
12. Kureichik V.V., Kureichik V.M., Sorokoletov P.V. Аnalysis and a survey of evolutionary models, Journal of Computer and Systems Sciences International, 2007, Vol. 46, No. 5, pp. 779-791.
13. Kureychik V.V., Kureychik V.V. Arkhitektura gibridnogo poiska pri proektirovanii [The architecture of hybrid search for design], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No. 7 (132), pp. 22-27.
14. Kureychik V.M., Kureychik V.V., Rodzin S.I. Modeli parallelizma evolyutsionnykh vychisleniy [Concurrency models evolutionary computation], Vestnik Rostovskogo gosudarstvennogo universiteta putey soobshcheniya [Vestnik Rostovskogo Gosudarstvennogo Universiteta Putey Soobshcheniya], 2011, No. 3, pp. 93-97.
15. Kureychik V.V., Kureychik V.M., Gladkov L.A., Sorokoletov P.V. Bionspirirovannye metody v optimizatsii [Inspirowane methods in optimization]. Moscow: Fizmalit, 2009, 384 p.
16. Kureychik V.M., Lebedev B.K., Lebedev O.B. Razbienie na osnove modelirovaniya adaptivnogo povedeniya biologicheskikh sistem [Partitioning based on simulation of adaptive behavior of biological systems], Neyrokomp'yutery: razrabotka, primenenie [Neurocomputers: development, application], 2010, No. 2, pp. 28-34.
17. Lebedev B.K., Lebedev V.B. Razmeshchenie na osnove metoda pchelinoy kolonii [Plasement on the basis of the beer colony method], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2010, No. 12 (113), pp. 12-19.
18. Gladkov L.A. Gibridnyy geneticheskiy algoritm resheniya zadachi razmeshcheniya elementov SBIS s uchetom trassiruemosti soedineniy [A hybrid genetic algorithm for solving the placement of elements VLSI traceability connections], Vestnik Rostovskogo gosudarstvennogo universiteta putey soobshcheniya [Vestnik Rostovskogo Gosudarstvennogo Universiteta Putey Soobshcheniya], 2011, No. 3, pp. 58-66.
19. Kureychik V.V., Kureychik Vl.Vl. Bioinspirirovannyy algoritm razbieniya skhem pri proektirovanii SBIS [Bioinspired algorithms for partitioning VLSI circuits in design], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 7 (144), pp. 23-29.
20. Kuliev E.V., Lezhebokov A.A. Issledovanie kharakteristik gibridnogo algoritma razmeshcheniya [Research parameters of hybrid algorithm for placement], Izvestiya YuFU, Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 3 (140), pp. 255-261.

Comments are closed.