Article

Article title APPROXIMATING MODELS OF TRANSFER FUNCTIONS OF DISTRIBUTED OBJECTS
Authors I.М. Pershin, G.Е. Veselov, M.I. Pershin
Section SECTION III. MODELING AND DESIGN
Month, Year 07, 2015 @en
Index UDC 681.5
DOI
Abstract Deals with the important problem of constructing approximate models for objects with distributed parameters. This problem is important because many processes to be automated are described by partial differential equations, mathematical models which do not have analytical solutions. If an analytical solution is obtained (determined by the object"s reaction to the eigenvector-functions of the operator of the object (spatial modes)), then the transfer function for each spatial mode can be represented as a ratio of analytic entire functions. If you do not have analytical solutions, the dynamic characteristics of such objects are defined using approximation models of transfer functions of distributed object on the selected spatial modes. Consider approximation models are based on the numerical simulation of the distributed object, or using experimental results. Because distributed objects have some specific properties, such as transfer functions of distributed objects and systems at each spatial fashion inputs are described by a relation of infinite polynomials, approximation and model of such facilities should take into account the specific properties. Classical methods of approximation, in the form of aperiodic link and link with a pure time delay, give large errors in the calculation of the dynamic characteristics of distributed objects. The article aims to develop a new approximations model the transfer function of the object for each spatial fashion inputs, taking into account the specific properties of distributed objects. The scientific challenge is to develop methods for determining the parameters of the approximating segment. The technique focuses on the use of numerical simulation results of the distributed object or experimental studies on the physical object and to be constructive. The article also presents the results of the comparison of dynamic characteristics of distributed object obtained using the analytical solution, approximations models and numerical simulations.

Download PDF

Keywords Distributed objects; the approximation of the transfer function.
References 1. Venot A., Pronrato L., Walter E. And Lebrucnec J.F. A Distribution–free criterion for "Robust Identification, with Applications in systems Modelling and Image Processing, Automatica, 1986, Vol. 22, No. 1, pp. 105-109.
2. Pasca La., Levis A.H. and Jin V.Y.-Y. On the design of Distributed Organisational structures, Automatica, 1988, Vol. 24, No. 1, pp. 81-86.
3. Valeev K.G, Zhautykov O.A. Beskonechnye sistemy differentsial'nykh uravneniy [Infinite system of differential equations]. Alma-Ata: Nauka Kazakhskoy SSR, 1974, 415 p.
4. Lykov A.V. Teoriya teploprovodnosti [Theory of thermal conductivity]. Moscow: Vysshaya shkola, 1967, 599 p.
5. Tekhnicheskaya kibernetika. Teoriya avtomaticheskogo regulirovaniya. Kn. 1. Matematicheskoe opisanie, analiz ustoychivosti i kachestva sistem avtomaticheskogo regulirovaniya [Technical Cybernetics. The theory of automatic regulation. Book 1. Matematica-mechanical description and
analysis of the stability and quality of automatic control systems], By ed. V.V. Solodovnikova. Moscow: Mashinostroenie, 1967, 768 p.
6. Malkov A.V., Pershin I.M. Sintez raspredelennykh regulyatorov dlya sistem upravleniya gidrolitosfernymi protsessami [The synthesis of distributed controllers for systems management processes hydrolithosphere]. Moscow: Nauchnyy mir, 2007, 364 p.
7. Malkov A.V., Pershin I.M. Sistemy s raspredelennymi parametrami. Analiz i sintez [System with distributed parameters. Analysis and synthesis]. Moscow: Nauchnyy mir, 2012, 476 p.
8. Pershin I.M. Sintez sistem s raspredelennymi parametrami [Synthesis of systems with distributed parameters], Mekhatronika, avtomatizatsiya, upravlenie [Mechatronics, Automation, Control], 2005, No. 6, pp. 2-4.
9. Voronin A.Yu., Pershin I.M. Sintez raspredelennoy sistemy upravleniya magnitnym polem toroidal'noy kamery [Synthesis of distributed control system for a toroidal magnetic field camera]. Part 1, Mekhatronika, avtomatizatsiya, upravlenie [Mechatronics, Automation, Control], 2006, No. 8, pp. 51-56.
10. Voronin A.Yu., Pershin I.M. Sintez raspredelennoy sistekmy upravleniya magnitnym polem toroidal'noy kamery [Synthesis of distributed sistemy of magnetic field toroidal chamber]. Part 2, Mekhatronika, avtomatizatsiya, upravlenie [Mechatronics, Automation, Control], 2006, No. 12, pp. 36-42.
11. Pershin I.M., Malkov A.V., Dubogrey V.F. Metodika sinteza raspredelennykh sistem upravleniya rezhimami ekspluatatsii mestorozhdeniy mineral'nykh vod [The technique of synthesis of distributed control systems modes of operation of deposits of mineral waters], Izvestiya vysshikh uchebnykh zavedeniy. Geologiya i razvedka [Proceedings of Higher Schools. Geology and Exploration], 2012, No. 2, pp. 76-81.
12. Pershin M.I. Proektirovanie sistemy upravleniya parametrami Kislovodskogo mestorozhdeniya mineral'nykh vod. Tekhnologii razvitiya kurortno-rekreatsionnogo kompleksa SKFO [The design of the control system parameters Kislovodsk mineral water deposits. Technology for the development of resort-recreational complex of the North Caucasus Federal district], Sbornik trudov 2-y ezhegodnoy nauchno-prakticheskoy konferentsii prepodavateley, studentov i molodykh uchenykh SKFU "Universitetskaya nauka – regionu" [Proceedings of the 2nd annual scientific-
practical conference of teachers, students and young scientists of NCFU "University science – the region"]. Vol. 1. Pyatigorsk: Izd-vo SKFU, 2014, pp. 143-156.
13. Pershin I.M., Veselov G.E., Pershin M.I. Sintez raspredelennykh sistem upravleniya gidrolitosfernymi protsessami mestorozhdeniy mineral'nykh vod [Synthesis of distributed control systems gidrolitosfernymi processes mineral waters], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 8 (157), pp. 123-137.
14. Martirosyan A.V., Martirosyan K.V., Pershin I.M. Analysis of the Caucasus Mineral Waters’ Field’s Modeling, Modern Applied Science, 2015, Vol. 9, No. 1, pp. 204-210. ISSN 1913-1844 E-ISSN 1913-1852. Published by Canadian Center of Science and Education.
15. Alexander B. Chernyshev, Karina V. Martirosyan. Analisys of the nonlinear distributed control system’s sustainability, Journal of Mathematics and Statistics, 2014, No. 10 (3), pp. 316-321.
16. Martirosyan A.V., Martirosyan K.V., Kapylova T.S. The model of mineral water deposits sustainable management using the decision support system, World Applied Sciences Journal, 2013, No. 27, pp. 101-106.
17. Martirosyan A.V., Martirosyan K.V. Modeling of information system "Caucasus Mineral Water’s hydromineral resources", 4th International Scientific and Practical Conference "Science and Society". London: SCIEURO, 2013, pp. 16-24.
18. Martirosyan A.V., Yanukyan E.G., Martirosyan K.V. Methods of complex object’s transfer function calculation for distributed control system, Journal of Mathematics and Statistics, 2014, No. 10 (3), pp. 23-27.
19. Grigor'ev V.V. ,Pershin I.M., Mansurova O.K. Rasshirenie kachestvennoy eksponentsial'noy ustoychivosti na lineynye raspredelennye sistemy. Tekhnogennye protsessy v gidrolitosfere (identifikatsiya, diagnostika, prognoz, upravlenie) [The expansion of qualitative exponential sta-
bility for linear distributed systems. Technogenic processes in hydrolithosphere (identification, diagnosis, prognosis, management)], Sbornik dokladov natsional'nogo nauchnogo foruma «NARZAN – 2013» [A collection of reports of the national research forum "NARZAN –
2013"]. Pyatigorsk: RIA–KMV, 2013, pp. 540-553.
20. William By Porter A. Sensitivity problems in distributive systems, Int. J. Control, 1976, Vol. 5, pp. 159-177.

Comments are closed.