Authors V.P. Fedosov, A.A. Legin, A.V. Lomakina
Month, Year 07, 2015 @en
Index UDC 621.396
Abstract To date, the active development of technology and the appearance of powerful instruments for digital signal processing has resulted to the fact that wireless communication technologies are becoming more widely used in various fields. Due to the growing popularity of wireless technologies to them increased requirements for increasing bandwidth and reducing the likelihood of errors in the transmitted message. Solve these problems allows the use of processing techniques space-time signals. The purpose of this article is to find methods and algorithms for solving the problem of increasing capacity and maintenance of wireless speaker channel in a multipath propagation, using technologies such as MIMO and OFDM. MIMO technology is used for underwater acoustic communications recently to increase the data rate for channels with bandwidth – limited. In this article we will discuss methods of implementing the acoustic communication channel based on the spatio-temporal signals where spatial multiplexing by using technology OFDM. The article presents algorithms for wireless data communication for underwater acoustic communications channel which have high spectral efficiency. For their analyzing is simulated bit error rate depending on the given signal / noise ratio (SNR). Thus, for a 64 kHz bandwidth signal bit-error probability when SNR = 10 dB is equal to 10-3. The simulation results show that MIMO OFDM is a promising technology for high-speed data transmission in underwater acoustic channels.

Download PDF

Keywords Antenna array (AA); MIMO (Multiple Input Multiple Output); OFDM (Orthogonal Frequency Division Multiplexing); acoustic communication; wireless communication; capacity; Bit Error Rate (BER).
References 1. Fedosov V.P., Muravitskiy N.S. Adaptivnaya priemnaya antennaya reshetka dlya obrabotki prostranstvenno-vremennykh signalov v MIMO-sisteme besprovodnoy peredachi dannykh [Foster adaptive antenna array for processing spatio-temporal signals in MIMO-system of wireless data transmission], Antenny [Antennas], 2011, No. 8, pp. 35-43.
2. Fedosov V.P., Emel'yanenko A.V., Gladushenko S.G., Pomortsev P.M. Metody i algoritmy mnogokanal'noy prostranstvennoy obrabotki shirokopolosnykh signalov [Methods and algorithms of multichannel processing of broadband signals], Nelineynyy mir [Nonlinear World],
2012, Vol. 10, No. 11, pp. 731-737.
3. Fedosov V.P., Emel'yanenko A.V. Sravnitel'naya effektivnost' besprovodnogo dostupa na osnove prostranstvennoy adaptatsii na vykhodakh antennoy reshetki pri ispol'zovanii MIMO OFDM v releevskom kanale [Comparative efficiency of wireless access on the basis of spatial adaptation at the outputs of the antenna array using MIMO OFDM in Rayleigh channel], Antenny [Antennas], 2013, No. 10 (197), pp. 045-049.
4. Fedosov V.P., Kucheryavenko S.V., Muravitskiy N.S. Povyshenie effektivnosti radiosvyazi v releevskom kanale na osnove antennykh reshetok [Improving the efficiency of radio communications in Rayleigh channel based on antenna arrays], Antenny [Antennas], 2008, No. 11, pp. 98-104.
5. Baosheng Li, Jie Huang, Shengli Zhou, Ball K., Stojanovic M., Freitag L., Willett P. MIMO-OFDM for High-Rate Underwater Acoustic Communications, Oceanic Engineering, IEEE Journal, 2009, Vol. 34, Issue 4, pp. 634-644.
6. Shiu D., Foschini G.J., Gans M.J., Kahn J.M. Fading Correlation and Its Effect on the Capacity of Multielement Antenna Systems, IEEE Transactions on Communications, 2000, Vol. 48, pp. 502-513.
7. Paulraj, Arogyaswami J., Gore, D.A., Nabar R.U., Bolcskei H. Switching between diversity and multiplexing in MIMO systems, Proceedings of the IEEE, No. 92 (2), pp. 198-218.
8. Raleigh G.G. and Cioffi J.M. Spatio-temporal coding for wireless communication, IEEE Trans. on Communications, March 1998, Vol. 46, No. 3, pp. 357-366.
9. Bolcskei H., Gesbert D., and Paulraj A.J. On the capacity of OFDM-based spatial multiplexing systems, IEEE Trans. Commun, Feb. 2002, Vol. 50, No. 2, pp. 225-234.
10. LeFloch B., Alard M., Berrou C. Coded orthogonal frequency division multiplex, Proc. of IEEE, Vol. 83, No. 6, pp. 982-996.
11. Bolcskei H. and Paulraj A.J. Space-frequency coded broadband OFDM systems, Proc. IEEE WCNC – Chicago, IL, Sept. 2000, pp. 1-6.
12. Foschini G.J. Layered space-time architecture for wireless communication in a fading environment when using multiple antennas, Bell Lab.Tech. J., 1996, No. 1 (2), pp. 41-59.
13. Shiu Da-Shan, Foschini G.J., Gans M.J., Kahn J.M. Fading correlation and its effect on the capacity of multielement antenna systems, IEEE Transactions on Communications, 2000, Vol. 48, No. 3, pp. 502-513.
14. Yong Soo Cho, Jaekwon Kim, Won Young Yang, Chung G. Kang. MIMO-OFDM Wireless Communications with MATLAB, John Wiley & Sons (Asia) Pte Ltd. 2010.
15. А.van Zelst, Schenk T.C.W. Implementation of a MIMO OFDM based wireless LAN system, IEEE Transactions on Signal Processing, 2004, Vol. 52, No. 2.
16. Li Y. (G.), Winters J. H., Sollenberger N.R. MIMO-OFDM for wireless communications: signal detection with enhanced channelestimation, IEEE Trans. on Comm., 2002, Vol. 50, pp. 1471-1477.
17. Roque D., Siclet C. Performances of Weighted Cyclic Prefix OFDM with Low-Complexity Equalization, IEEE Communications Letters, No. 17 (3), pp. 439-442.
18. Kermoal J., Schumacher L., Pedersen K.I., Mogensen P., Frederiksen F. A Stochastic MIMO Radio Channel Model With Experimental Validation, IEEE Journal on Selected Areas Communications, 2002, Vol. 20, pp. 1211 -1226.
19. Trefethen L.N., Bau D. Numerical Linear Algebra, SIAM, 1997.
20. Zelst A. Space division multiplexing algorithms, Proc. of the 10th Mediterranean Electrotechnical Conference (MELECON), 2000, Vol. 3, pp. 1218-1221.
21. Slyusar V. Sistemy MIMO: printsipy postroeniya i obrabotka signalov [MIMO systems: principles of construction and signal processing], Elektronika. Nauka. Tekhnologiya. Biznes [Electronika: Science, Technology, Business], 2005, No. 8.
22. Coleri S., Ergen M., Puri A., Bahai A. Channel estimation techniques based on pilot arrangement in OFDM systems, IEEE Transactions on Broadcasting, Sep. 2002.
23. Urik Robert Dzh. Osnovy gidroakustiki [Fundamentals of hydroacoustics]: Translation from English. Leningrad: Sudostroenie, 1987, 448 p.
24. Rozhin F.V., Tonakanov O.S. Obshchaya gidroakustika [General underwater acoustics]. Moscow: Izd-vo Mosk. un-ta, 1988, 160 p.
25. H.264 or MPEG-4 Part 10, Advanced Video Coding (MPEG-4 AVC).
26. Gusev V.G. Sistemy prostranstvenno-vremennoy obrabotki gidroakusticheskoy informatsii [System of spatial-temporal processing sonar information]. Leningrad: Sudostroenie, 1988, 264 p.
27. Kondanev V.P., Piskarev S.P. Metodika optimizatsii kharakteristik sistemy peredachi tsifrovoy informatsii po gidroakusticheskomu kanalu v usloviyakh odnoluchevogo priema [The method of optimization of characteristics of systems of digital information transmission on the hydroacoustic channel in terms of single beam reception], Akusticheskiy zhurnal [Akusticheskij Zhurnal], 1996, Vol. 42, No. 4, pp. 573-576.
28. Kur'yanov B.F., Penkin M.M. Tsifrovaya akusticheskaya svyaz' v melkom more dlya okeanologicheskikh primeneniy [Digital acoustic communication in shallow waters for Oceanographic applications], Akusticheskiy zhurnal [Akusticheskij Zhurnal], 2010, Vol 56, No. 2, pp. 245-255.
29. Volkov A.V., Kur'yanov B.F., Penkin M.M. Tsifrovaya gidroakusticheskaya svyaz' dlya okeanologicheskikh primeneniy [Digital hydroacoustic link for Oceanographic applications], Materialy YII Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii "Sovremennye sredstva i metody okeanologicheskikh issledovaniy" [YII materials of International scientific-technical conference "Modern methods and tools of Oceanological investigations"]. Moscow, 2001, pp. 182-191.

Comments are closed.