Article

Article title MODELING AND CONTROL OF TECHNOLOGICAL PROCESSES OF NATURAL GAS DEWATERING
Authors S.E. Abramkin, S.E. Dushin
Section SECTION V. AUTOMATION AND CONTROL
Month, Year 07, 2015 @en
Index UDC 681.51.011
DOI
Abstract The purpose is to work out a dynamic mathematical models of controlled processes of absorption dehydration of natural gas. On the basis of researches of the flow circulating in the apparatus, there was produced a conceptual model of heat and mass transfer processes in the complex technological systems "absorption-desorption" performed as a control object, characterized by interconnection of heterogeneous physical processes, structure and reasonable choice of input, internal, measured and controlled variables. On the basis of the conceptual model there were developed and studied mathematical models of controlled mass transfer processes in the packing type absorber and heat transfer processes in the evaporator and air cooler. The models are characterized by reasonable assumptions, initial and boundary conditions, the spatial distribution of values and taking into account the functional dependence of the velocity of the gaseous phase of the external and internal disturbing factors that can adequately manage the processes of change in the conditions of these factors. The multi-mode control of simulated processes is presented. The concept of multi-mode control for the process of gas dewatering is based on providing different modes of operation by connecting a subregulatory in accordance with the current dynamic situation. Based on the information received, the multi-mode regulator according to the current technological mode generates the desired control signal. The practical importance of the developed mathematical models of controlled mass and heat transfer processes of absorption dehydration of natural gas is the ability to explain and predict the behavior of complex technological systems used for the complex gas preparation at various modes of operation. The use of multi-mode control maintains a specified gas quality in a wide range of pressures, temperatures and flow rates.

Download PDF

Keywords Absorption; desorption; mass exchange; heat exchange; mathematical model; controlled process; multi-mode control; Big Data.
References 1. Kuliev A. M., Alekperov G. Z., Tagiev V.G. Tekhnologiya i modelirovanie protsessov podgotovki prirodnogo gaza [Technology and Modeling of Processes of Natural Gas Preparation]. Moscow, Nedra Publ., 1978, 232 p.
2. Kafarov V.V. Modelirovanie khimicheskikh protsessov [Simulation of Chemical Processes]. Moscow, Znanie Publ., 1968, 62 p.
3. Taranenko B F., German V.T. Avtomaticheskoe upravlenie gazopromyslovymi ob"ektami [Automatic Control of Gas Production Works]. Moscow, Nedra Publ., 1976, 213 p.
4. Protod'yakonov I.O., Muratov O.V., Evlampiev I.I. Dinamika protsessov khimicheskoy tekhnologii [Dynamics of Processes of Chemical Technologies]. Leningrad, Khimiya Publ., 1984, 304 p.
5. Ahsan A. Evaporation, Condensation and Heat transfer. InTech, 2011.
6. Cussler E.L. Diffusion mass transfer in fluid systems. 3rd ed. Cambridge University Press, 2007.
7. Iguchi Manabu, Ilegbusi Olusegun J. Modeling Multiphase Materials Processes: Gas-Liquid Systems. Springer, 2010.
8. Luyben W.L. Process Modeling Simulation and Control for Chemical Engineers 2nd ed. McGraw-Hill, 1996.
9. Mikles J., Fikar M. Process Modelling, Identification, and Control. Springer, 2007.
10. Seborg D.E., Mellichamp D.A., Edgar T.F., Doyle III F.J. Process Dynamics and Control, International Student Version. 3rd ed. Wiley, 2011.
11. Kubrusly C.S., Malebranche H. Sensors and controllers location in distributed systems – a survey, Automatica, 1985, Vol. 21, No. 2, pp. 117-128.
12. Foias C., Tannenbaum A. Optimal sensitivity theory for multivariate distributed plants,/ International Journal of Control, 1988, Vol. 47, No. 4, pp. 985-992.
13. Mayer-Shenberger V., Kuk'er K. Bol'shie dannye. Revolyutsiya, kotoraya izmenit to, kak my zhivem, rabotaem i myslim [Big Data. A Revolution that Will Change the Way We Live, Work and Think]. Moscow, Mann, Ivanov i Ferber, 2014, 240 p.
14. Seleznev K. Problemy analiza bol'shikh dannykh [Problems of Analysis of Big Data], Otkrytye sistemy. SUBD [Open Systems], 2012, No. 7, pp. 25-29.
15. Chebotarev V.V. Raschety osnovnykh pokazateley tekhnologicheskikh protsessov pri sbore i podgotovke skvazhinnoy produktsii [Calculation of Basic Indicators of Technological Processes in the Collection and Preparation of Well Production]. Ufa, UGNTU Publ., 2007.
16. Abramkin S.E., Dushin S.E., Kuz'min N.N. Matematicheskie modeli upravlyaemykh masso- i teploobmennykh protsessov v komplekse tekhnologicheskikh sistem «Absorbtsiya–Desorbtsiya» [Mathematical models of controlled mass- and heat exchange processes in technologic complex of systems «Absorption-Desorption»], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 6 (119), pp. 255-264.
17. Abramkin S.E., Dushin S.E., Kuz'min N.N. Modelirovanie upravlyaemykh masso- i teploobmennykh protsessov v sisteme podgotovki prirodnogo gaza k transportirovke [The simulation of controlled mass- and heat exchange processes in the system of preparation of natural gas for transportation], Analiticheskaya mekhanika, ustoychivost' i upravlenie: Trudy X
Mezhdunarodnoy Chetaevskoy konferentsii. T. 1. Sektsiya 1. Analiticheskaya mekhanika [Analytical mechanics, stability and control: Proceedings of X International conference Kitaiskoi. Vol. 1. Section 1. Analytical mechanics. Kazan, 12-16 June 2012]. Kazan': Izd-vo Kazan. gos. tekhn. un-ta, 2012, pp. 3-10.
18. Abramkin S.E., Dushin S.E., Polyashova K.A. Matematicheskaya model' upravlyaemogo teploobmennogo protsessa v isparitele [A mathematical model of the controlled heat-exchange process in the evaporator], Izvestiya SPbGETU «LETI» [Izvestiya SPbGETU «LETI»], 2011, Issue 9, pp. 32-36.
19. Abramkin S.E., Grudyaeva E.K., Dushin S.E. Sistema regulirovaniya teploobmennogo protsessa v apparate vozdushnogo okhlazhdeniya [The system of regulation of heat exchange process in the device of air cooling], Izvestiya SPbGETU «LETI» [Izvestiya SPbGETU «LETI»], 2011, Issue 6, pp. 35-40.
20. Filimonov N.B. Kontseptsiya mnogorezhimnogo regulirovaniya [The concept of multi-mode regulation], Avtomaticheskoe upravlenie ob"ektami s peremennymi kharakteristikami: Mezhvuz. sb. nauch. tr. [Automatic control of objects with varying characteristics: interuniversity collection of scientific papers]. Novosibirsk: NETI, 1988, pp. 88-92.

Comments are closed.