Authors E.K. Grudyaeva, S.E. Dushin
Month, Year 07, 2015 @en
Index UDC 681.54
Abstract Treatment control indicates the existing purification systems are used for a narrow contaminant concentrations range in wastewater source. The purpose of this study is the synthesis of the control system with logical-dynamic controller to remove contaminants in the wide range of concentrations. The controllable mathematical model of a two-zone bioreactor with a recycle and a return flow from an ultrafiltration membrane unit based on ASM1 is represented in this paper. The scheme of the biochemical reactions compounds interaction is designed. The quality indices of processes for the biological wastewater treatment control system are entered. The technique of parametrical setup of the regulator with flexible structure is devised on their basis. The logical-dynamic setting was performed for a wide range of pollutants, whose values are obtained by analysis of more the 20 treatment objects in Russia and the other countries. The subregulator setting ratio dependences on some substrate ranges are defined. According the developed model the computer model is built in Matlab/Simulink. Results of modeling show possibility of high- quality cleaning in the conditions of broad change of levels of entrance multicomponent pollution in the set invariable volume of the bioreactor. Practical relevance of the research is in using of the logical-dynamic regulator with optimum settings of parameters to allows providing admissible output concentration of ammonium, nitrates and COD on all operating modes of a control system.

Download PDF

Keywords Wastewater; biological treatment; mathematical modeling; ASM1; control; logical-dynamic controller.
References 1. Monod J. Rechercher sur la croissance des cultures bacteriennes (Thиse Doctorat иs Sciences Naturelles). Paris: Herman et Cie, 1942, 210 p.
2. Vavilin V.A., Vasil'ev V.B. Matematicheskoe modelirovanie protsessov biologicheskoy ochistki stochnykh vod aktivnym ilom [Mathematical modeling of biological wastewater treatment by activated sludge]. Moscow: Nauka, 1979, 118 p.
3. Haldane J.B.S. Enzymes. London: Longmans, 1930, 235 p.
4. Canale R.P. Predator-pray relationships in a model for activated process, Biotech. Bioeng., 1969, Vol. 11, No. 5, pp. 887-907.
5. Arzamastsev A.A., Al'bitskaya E.N. Matematicheskoe modelirovanie yavleniya samoregulirovaniya temperatury v bioreaktore [Mathematical modeling of the phenomenon of self-regulation of temperature in bioreactor], Matematicheskoe modelirovanie [Mathematical modeling], 2010, Vol. 22, No. 10, pp. 93-108.
6. Olsson G., Newell B. Wastewater treatment systems. Modeling, Diagnosis and Control. ISBN 1-900222-15-9. London: IWA Publishing, 1999, 756 p.
7. Ali E. Optimal Operation of a Wastewater Treatment Unit Using Advanced Control Strategy, Saudi 5th Engineering Conference, Umm Alqura University, 1999.
8. Zhao Y., Skogestad S. Comparison of Various Control Configurations for Continuous bioreactor, Ind. Eng. Chem. Res., 1997, No. 36, pp. 697-705.
9. Aguilar-Lуpez R. Robust Generic Model Control for Dissolved Oxygen in Activated Sludge Wastewater Plant, Chemical & Biochemical Engineering Quarterly, 2008, Vol. 22, No. 1, pp. 71-79.
10. Henze M., Guer W., Matsuo T., Van Loosdrecht M. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3, Scientific and Technical Reports. IWA Publishing, London, UK. 2000, 122 p.
11. Smirnov N.V. Upravlenie protsessom bioochistki vody v aerotenke [Process control of biological water purification in the aeration tank], XII Vserossiyskoe soveshchanie po problemam upravleniya VSPU-2014 (Moskva, 16-19 iyunya 2014 g.) [All-Russian meeting on control problems] (Moskow, 16-19 june 2014)], pp. 692-699.
12. Fikar M., Chachuat B., Latifi M. A. Optimal Operation of Alternating Activated Sludge Processes, Control Engineering Practice, 2005, Vol. 3, Issue 7, pp. 853-861.
13. Kirillov A.N. Invariantnye mnozhestva sistemy upravleniya protsessom biologicheskoy ochistki [Invariant sets of the process control system of biological treatment], Trudy Karel'skogo nauchnogo tsentra RAN [Proceedings of the Karelian Research Centre of Russian Academy of Sciences], 2011, No. 5, pp. 33-37.
14. Gordeeva Yu.L., Ivashkin Yu.A., Gordeev L.S. Algoritmy rascheta pokazateley protsessa mikrobiologicheskogo sinteza v periodicheskikh usloviyakh kul'tivirovaniya [Algorithms for calculating the process of microbiological synthesis in periodic cultivation conditions], Vestnik AGTU. Ser.: Upravlenie, vychislitel'naya tekhnika i informatika [Bulletin ASTU. Ser.: Management, Computer Science and Informatics], 2011, No. 2, pp. 7-14.
15. Grudyaeva E.K., Dushin S.E., Sholmova N.E. Analiz tekhnologicheskogo protsessa ochistki stochnykh vod s membrannym bioreaktorom kak ob"ekta upravleniya [The analysis of the technological process of wastewater treatment with membrane bioreactor as an object of management], Izvestiya SPbGETU «LETI» [Saint Petersburg Electrotechnical University "LETI" News], 2013, No. 5, pp. 48-56.
16. Grudyaeva E.K., Dushin S.E. Issledovanie matematicheskoy modeli Keneyla v tekhnologicheskom protsesse ochistki stochnykh vod [Research of mathematical model Canala in the technological process of wastewater treatment], Izvestiya SPbGETU «LETI» [Saint Petersburg Electrotechnical University "LETI" News], 2014, No. 3, pp. 44-50.
17. Zhmur N.S. Tekhnologicheskie i biokhimicheskie protsessy ochistki stochnykh vod na sooruzheniyakh s aerotenkami [Technological and Biochemical Processes of Waste Water Treatment on Treatment Plants with Aerotanks]. Moscow: AKVAROS, 2003, 512 p.
18. Khentse M., Armoes P., Lya-Kur-Yansen Y., Arvan E. Ochistka stochnykh vod [Wastewater treatment]. Moscow: Mir, 2009, 480 p.
19. Gordeeva Yu.L., Gordeev L.S. Matematicheskaya model' nepreryvnogo protsessa v bioreaktore s retsiklom substrata i biomassy [A mathematical model of a continuous process in a bioreactor with recycle of substrate and biomass], Vestnik AGTU. Ser.: Upravlenie, vychislitel'naya tekhnika i informatika [Vestnik of Astrakhan State Technical University. Series: Management, Computer Sciences and Informatics], 2013, No. 2, pp. 9-18.
20. Stahl T., Duffy G., Kestel S., Gray M. Dissolved Oxygen Control Based in Real-Time Oxygen Uptake Rate Estimation, Florida Water Resources Journal, 2013, No. 4, pp. 50-53.
21. Weijers S.R. Modelling, Identification and Control of Activated Sludge Plants for Nitrogen Removal. Eindhoven: Technische Universiteit Eindhoven, 2000, 235 p.
22. SNiP 2.04.03-85 «Kanalizatsiya. Naruzhnye seti i sooruzheniya» [SNiP 2.04.03-85 "Sewerage. External networks and constructions"]. Moscow: OAO «TsPP», 2012, 97 p.

Comments are closed.