Authors Yu.V. Zachinyaev
Month, Year 08, 2015 @en
Index UDC 621.373.9
Abstract The present work is aimed at the research and analysis of the approach to solving the problem of increasing the frequency deviation of the linear frequency modulated signals. According to the literature and patent documents analysis the relevance of the research field and the necessity of the further research for better use of linear frequency modulated signals in areas such as radiolocation, access control, secure communications were confirmed. The structure of the linear frequency modulated signals generator based on the phase self-modulation effect has been provided. Generator includes optical units forming the master pulse, fiber-optic delay line transforming a Gaussian optical pulse signal into the chirp signal, optical receiver module and frequency conversion components. The operation principle of such device, analytical expressions to get the basic parameters of the generated signals – chirp central frequency and frequency deviation – were considered. Simulation of the chirp generator proving the efficiency of the devise was performed – the shape of the frequency spectrum corresponds with the spectrum of the default chirp, and the autocorrelation sidelobes don’t exceed minus 13,4 dB level. It has been shown that the proposed technical solution allows to substantially increase the value of frequency deviation as compared to currently existing analogues. The boundary value of frequency deviation of modern approaches to the chirp generating does not exceed 1–10 GHz. Chirp generator based on self-phase modulation effect provides a frequency deviation of the order of 30–40 GHz with a pulse width of 100 ps and is limited by the parameters of the element base, in particular, optical receiver modules.

Download PDF

Keywords Linear frequency modulated signals; phase self-modulation effect; ultra wideband signal generation.
References 1. Gusarov A.A. Sovremennye sistemy radiochastotnoy identifikatsii i registratsii ob"ektov [The modern system of radio frequency identification and registration of objects], Rynok mikroelektroniki [Microelectronics Market], 2004, No. 2. Available at: (accessed 05 February 2015).
2. Raveendra K.R. Digital Transmission using Multi-Mode Continuous Phase Chirp Signals, IEEE Proc. Commun., 1986, Vol. 143, No. 2, pp. 87-92.
3. Springer A. Gugler W. Spread Spectrum Communications Using Chirp Signals, EUROCOMM., 2000, pp. 166-170.
4. Huaping L. Multicode Ultra-Wideband Scheme Using Chirp Waveforms, IEEE Journal on selected areas in communications, 2006, Vol. 24, No. 4, pp. 885-891.
5. Berni A.J., Greeg W.D. On the Utility of Chirp Modulation for Digital Signaling, IEEE Trans. on Commun., 1973, Vol. 21, No. 6, pp. 748-751.
6. Kaminsky E.J. and Simanjuntak L. Chirp Slope Keying for Underwater Communications, Proc. SPIE 5778, 2005, pp. 894-905.
7. Dyatlov A.P., Dyatlov P.A. Adaptivnyy avtokorrelyatsionnyy obnaruzhitel' svyaznykh LChM-signalov [Adaptive autocorrelation detector coherent chirp signals], Spetsial'naya tekhnika [Special Equipment], 2009, No. 6, pp. 34-43.
8. Zachinyaev Yu.V. Analiz i klassifikatsiya formirovateley lineyno-chastotno-modulirovannykh radiosignalov c tochki zreniya umen'sheniya dlitel'nosti formiruemykh signalov [Analysis and classification of shapers are linear-frequency-modulated radio signals from the point of view of reducing the duration of the generated signals], Sovremennye problemy nauki i obrazovaniya [Modern problems of science and education], 2012, No. 5. Available at: (accessed 05 February 2015).
9. Zachinyaev Yu.V., Rumyantsev K.E. Radiotekhnicheskie protsessory na volokonno-opticheskikh strukturakh. Formirovateli LChM-signalov: Monografiya [Electronic processors for fiber-optic structures. Shapers LFM signals: Monograph]. Saarbryukken: Izd-vo LAP Publishing, 2014, 177 p.
10. Merrill I. Skolnik. Radar Handbook. 2d ed. McGraw-Hill, 1990, 1220 p. ISBN-13: 978-0070579132.
11. Rumyantsev K.E., Gorbunov A.V. Dinamicheskie zapominayushchie ustroystva na osnove binarnykh volokonno-opticheskikh struktur [Dynamic storage device based on binary fiberoptic structures], Radiotekhnika [Radioengineering], 2002, No. 12, pp. 73-80.
12. Kukuyashnyy A.V. Osobennosti formirovaniya LChM signalov s ispol'zovaniem volokon-noopticheskikh struktur [Features of formation of the chirp signals using fiber-optic structures], Informatsionnoe protivodeystvie ugrozam terrorizma [Information Counteraction to the Terrorism Threats], 2007, No. 9, pp. 75-88.
13. Kukuyashnyy A.V., Timonov V.V. Trebovaniya k elementnoy baze volokonno-opticheskikh protsessorov [Requirements for components of fiber-optic processors], Radiotekhnicheskie i televizionnye sredstva sbora i obrabotki informatsii: Sbornik nauchnykh statey [Radio and television means of collecting and processing information: Collection of scientific articles], Ed. By K.E. Rumyantseva. Taganrog: Izd-vo TRTU, 1998, 162 p.
14. Zachinyaev Yu.V., Rumyantsev K.E., Kukuyashnyy A.V. Formirovanie nanosekundnykh LChM-radiosignalov na volokonno-opticheskikh strukturakh [The formation of the nanosecond chirp radio signals on fiber-optic structures], Elektrotekhnicheskie i informatsionnye sistemy i kompleksy [Electrical and data processing facilities and systems], 2011, Vol. 7, No. 3, pp. 32-38.
15. Agraval G.P. Nelineynaya volokonnaya optika [Nonlinear fiber optics]: Translation from English. Moscow: Mir, 1996, 323 p.
16. Ivanov A.B. Volokonnaya optika: komponenty, sistemy peredachi, izmereniya [Fiber optics: components, transmission systems, measurement]. Moscow: Izd-vo «Syrus System», 1999, 673 p.
17. Paschotta R. Encyclopedia of Laser Physics and Technology. Berlin: Wiley-VCH, 2008 844 p.
18. Papichaya C., Delphine M. Ge/SiGe multiple quantum well photodiode with 30 GHz band-width, Applied physics letters, 2011, pp. 121-123.
19. Beling A., Zhou1 Q., Sinsky J.H. 30 GHz fully packaged modified uni-traveling carrier photo-diodes for high-power applications, Avionics Fiber-Optics and Photonics Conference (AVFOP), 2013, pp. 9-10.
20. Finisar XPDV21x0R 50 GHz, Finisar Photodetector Product Brief. Available at:
50ghz_photodetector_product_brief_reva1.pdf ((accessed 12 November 2015).

Comments are closed.