Article

Article title STUDY OF STABILITY OF GAS SENSORS BASED COBALT POLYACRYLONITRILE
Authors T.A. Bednaya, S.P. Konovalenko
Section SECTION IV. ELECTRONICS AND NANOTECHNOLOGY
Month, Year 08, 2015 @en
Index UDC 621.317.799:539.216.2:539.217.5:541.67
DOI
Abstract Due to the pollution of the atmosphere with toxic gases is an important problem of measuring their concentration in the air. For the detection of toxic substances in the air required gas sensors, which will be not only reliable, highly sensitive, selective and reversible favorable temperature conditions, but remain stable for a sufficiently long time. Currently, one of the most popular and promising monitoring atmospheric composition are semiconductor resistive sensors. For their creation of great interest is the possibility of regulation of various mechanical and electrical properties of polymers by adding to the original polymer matrix dispersed fillers. One of the most promising from a practical point of view direction in this area is the creation of composite polymers with improved gas sensing properties. In this study we investigated sensors based on polyacrylonitrile (PAN) with different percentages of cobalt. By varying the process parameters of the process of formation of structure metal- polymer nanocomposites, it is possible to change the electrical properties of the material. It has been found that making the filler (in this case, cobalt) in the base polymer leads to improved stability of the sensor. The purpose of this paper is to construct a model that allows you to associate the stability of gas sensitivity coefficient values PAN cobalt films with the parameters of the technological process of formation of gas sensitive material. This model is proposed for the targeted synthesis of materials and a significant reduction in time and resources.

Download PDF

Keywords Nanocomposite materials; polyacrylonitrile; neural network modeling gas-sensing materials; metal-containing organic polymers; IR- pyrolize.
References 1. Harrison R., Webb J. A review of the effect of N fertiliser type on gaseous emissions, Adv. Agron., 2001, Vol. 73, pp. 65-108.
2. Abdul-Wahab S.A., Al-Alawi S.M., El-Zawahry A. Patterns of SO2 emissions: a refinery case study, Environmental Modelling and Software, 2002, Vol. 17 (6), pp. 563-570.
3. Lemieux P.M., Lutes С.C., Santoianni D.A. Emissions of organic air toxics from open burning: a comprehensive review, Progress in Energy and Cimbustion Sci., 2004, Vol. 30, pp. 1-32.
4. Vasil’ev R.B., Ryabova L.I, Rumyantseva M.N, Gas'kov A.M. Gazovaja chuvstvitel'nost' granic razdela v poluprovodnikovyh materialah [Gas sensitivity of discontinuities in semiconductor materials], Sensor [Sensor], 2005, Vol. 1, pp. 21-47.
5. Shakhotin A.N., Kudryashov S.I., Safonova O.V., Gas'kov A.M., Demidov A.V., Putilin F.N. Legirovanie palladiem policristalicheskikh plenok SnO2 metodom lazernoy ablyacii [Alloying palladium polycrystalline SnO2 films by laser ablation], Himiya vysokikh energy [High Energy Chemistry], 2000, Vol. 34, No. 3, pp. 219-235.
6. Madler L., Roessler A., Pratsinis S.E., Sahm T., Gurlo A., Barsan N., Weimar U. Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO 2 nanoparticles, Sensors and Actuators B: Chemical, 2006 Vol. 114 (1), pp. 283-295.
7. Choi U.-S., Sakai G., Shimanoe K., Yamazoe N. Sensing properties of Au-loaded SnO2-Co3O4 composites to CO and H2, Sensors and Actuators B: Chemical, 2006, Vol. 107, pp. 397-401.
8. Wurzinger O., Reinhardt G. CO-sensing properties of doped SnO2 sensors in H2-rich gases, Sensors and Actuators B: Chemical, 2004, Vol. 103, pp. 104 -110.
9. Kennedy M.M., Kruis F.E., Fissan H., Mentha B.R., Stappert S., Dumpich G. Tailored nano-particle films from monosized tin oxide nanocrystals: Particle synthesis, film formation, and size-dependent gas-sensing properties, J. Appl. Phys., 2003, Vol. 93, pp. 551-560.
10. Joshi R.K., Kruis F.E., Dmitrieva O. Gas sensing behavior of SnO1. 8: Ag films composed of size-selected nanoparticles, J. Nanopart. Res., 2006, Vol. 8, pp. 797-808.
11. Semenistaya T., Petrov V, Ping Lu. Nanocomposite of Ag-Polyacrylonitryle as a Selective Chlorine Sensor, Advanced Materials Research, 2013, Vol. 804, pp. 135-140.
12. Kozhitov L.V., Crapuhin V.V., Kozlov V.V., Carpacheva G.P. Sposob polucheniya termostabil’nogo nanokompozita Cu/Poliakrilonitril [A method of producing thermostable nanocomposite Cu/Polyacrylonitrile]. Patent No. 2330864. 2008.
13. Al'-Khadrami I.S., Korolev A.N., Semenistaya T.V., Nazarova T.N., Petrov V.V. Issledovaniye gazochuvstvitel'nykh svoystv med'soderzhashchego poliakrilonitrila [Investigation of gas sensing properties of copper-containing polyacrylonitrile], Izvestiya vuzov. Elektronika [News of Higher Educational Institutions. Electronics], 2008, No. 1, pp. 20-25.
14. Makeyeva N.A., Pin Lu, Ivanets V.A., Semenistaya T.V., Plugotarenko N.K., Korolev A.N. Prognozirovaniye velichiny otklika na dioksid azota gazochuvstvitel'nogo materiala na osnove poliakrilonitrila s pomoshch'yu metodov teorii samoorganizatsii [Forecasting the response to nitrogen dioxide of gas-sensing material based on polyacrylonitrile with the methods of the
theory of self-organization], Izvestiya YUFU . Tekhnicheskiye nauki [Izvestiya SFedU. Engineering Sciences], 2011, Vol. 117, No. 4, pp. 149-156.
15. Zemtsov L.M., Karpacheva G.P. Khimicheskiye prevrashcheniya poliakrilonitrila pod deystviyem nekogerentnogo infrakrasnogo izlucheniya [Chemical transformation of the polyacrylonitrile under the influence of incoherent infrared radiation], Vysokomolekulyarnyye soyedineniya [Polymer Science], 1994, Vol. 36, No. 6, pp. 919-924 .
16. Bradley J. Holliday, Thomas B. Standford, and Timothy M. Swager. Chemoresistive gas-phase nitric oxide sensing with cobalt-containing metallopolymers, Chem. Mater., 2006, Vol. 18, pp. 5649-5651.
17. Bednaya T.A., Konovalenko S.P., Semenistaya T.V. Sravnitel'nyy analiz gazochuvstvitel'nosti materialov na osnove poliakrilonitrila s razlichnymi modifitsiruyushchimi dobavkami [Comparative analysis of gazochuvstvitel materials on the basis of polyacrylonitrile with various modifying additives], Tez. dokl. 14-y nauch. molodezh. shkoly «Fizika i tekhnologiya mikro- i
nanosistem» [Abstracts of 14-th scientific youth school "Physics and technology of micro and nanosystems"]. St. Petersburg, 2011, pp. 42.
18. Konovalenko S.P., Bednaya T.A., Semenistaya T.V., Korolev A.N. Prognozirovaniye vliyaniya tekhnologicheskikh parametrov formirovaniya gazochuvstvitel'nykh materialov na osnove poliakrilonitrila na elektrosoprotivleniye [Forecasting the impact of technological parameters
of formation of gas-sensitive materials based on polyacrylonitrile resistivity], Izvestiya vysshikh uchebnykh zavedeniy. Materialy elektronnoy tekhniki [News of Higher Educational Institutions. Materials of electronic engineering], 2013, No. 1, pp. 48-52.
19. Semenistaya T.V., Petrov V.V., Bednaya T.A. Energoeffektivnye sensory gazov na osnove nanokompozitnykh organicheskikh poluprovodnikov [Energy efficient gas sensors based on nano-composite organic semiconductors]. Taganrog: Izd-vo YuFU, 2013, 120 p
20. Golovko V.A. Neyronnyye seti: obucheniye , organizatsiya i primeneniye [Neural networks: training, organization and application]. Book 4: Ucheb. posobiye dlya vuzov [Textbook for high schools], Under the general ed. A.I. Galushkina. Moscow: IPRZHR.2001, 256 p.
21. Anil K. Jain, Jianchang Mao, K.M. Mohiuddinо Artificial Neural Networks: A Tutorial, Computer, 1996, Vol. 29. No. 3, pp. 31-44.
22. Baskin I.I. Modelirovaniye svoystv khimicheskikh soyedineniy s ispol'zovaniyem iskusstvennykh neyronnykh setey i fragmentnykh deskriptorov. Diss. dokt. fiz.-mat. nauk [Modelling of the properties of chemical compounds using artificial neural networks and fragment descriptor. Dr. phys. and math.sc. diss.]. Moscow, 2009.
23. Lu Pin. Razrabotka tekhnologii izgotovleniya i issledovaniye kharakteristik sensorov dioksida azota i khlora na osnove plenok poliakrilonitrila. Dis. kand. tekhn. nauk [The development of technology and the study of the characteristics of sensors for nitrogen dioxide and chlorine-based films of polyacrylonitrile. Cand. of eng. sc. diss.]. Taganrog, 2012.

Comments are closed.