Article

Article title EFFECT STUDY OF THE TECHNOLOGICAL CONDITIONS ON THE GROWTH OF NANOCOMPOSITE MATERIALS FRACTAL STRUCTURES: MATHEMATICAL SIMULATION
Authors A.I. Bahmatskaya, N.K. Plugotarenko
Section SECTION IV. ELECTRONICS AND NANOTECHNOLOGY
Month, Year 08, 2015 @en
Index UDC 62-405.8
DOI
Abstract The purpose of this research is a refinement of the model of growth of fractal structures in thin films of nanocomposite materials obtained citrate sol-gel method. The research problem is the definition of the relationship of process parameters and the formation of percolation clusters fractal nature. The process of evolution and the formation of cluster structures citrate solgel method are considered as processes that depend on the local characteristics of fractals. The object of the study is based on thin films of the oxides of copper and polyethylene glycol. Mechanisms of heat treatment processes and the formation of the films of the materials were presented in the form of kinetic stages. During the research used algorithms, methods of fractal analysis, mechanisms of formation o cluster structures such as the ability to "Dragon Harter-Hatveya", Eden’s model, model of stochastic fractal, algorithm Hoshena-Kopelman, the mechanism of "cluster-particle", the mechanism of "cluster-cluster", random walk model, percolation theory. Computer experiment to calculate the percolation threshold and the fractal dimension was carried out in a software environment MatLab. Effect of changes in growth conditions in the structure of the copper-bearing structures have been shown. Results of the study allowed us to estimate the effect of changing the growth conditions on the morphology and properties of nanocomposite structures, and to identify the potential formation of process parameters of high gas-sensitive samples. It was found that when the same amount of particle fractal dimension of the studied structures smaller than the structure of the simulation without taking into account factors pH. The percolation threshold in the formation of fractal clusters has been identified. It is not dependent on pH and total amount of particles, and depends only on the ratio of total particles to the surface area to be filled.

Download PDF

Keywords Gas-sensitive materials; the fractal dimension; a percolation cluster; the sol-gel method.
References 1. Kononova I.E., Moshnikov V.A., Krishtab M.B., and Pronin I.A. Fractally Aggregated Micro- and Nanosystems Synthesized from Sols Glass Physicsand Chemistry, 2014, Vol. 40, No. 2, pp. 190-202.
2. Varadharaja Perumal Srinivasa, Durgajanani Sivalingam, Jeyaprakash Beri Gopalakrishnan and John Bosco Balaguru Rayappan. Nanostructured Copper Oxide Thin Film for Ethanol Vapor Sensing, Journal of Applied Sciences, 2012, Vol. 12, pp. 1656-1660.
3. Zhang Q., Zhang K., XuetD. and al. CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications, Progress in Materials Science, 2014, pp 208-337.
4. Chapelle A., Oudrhiri-Hassani F., Presmanes L., Barnabй A., Tailhades Ph.. CO2 sensing properties of semiconducting copper oxide and spinel ferrite nanocomposite thin film, Applied Surface Science, 2010, pp. 256.
5. Gaylord R.J., Wellin P.R. Computer Simulations with Mathematica. New York: Springer-Verlag, 2005, 298 p.
6. Stauffer D., Aharony A. Introduction to percolation theory. Taylor&Francis, 2003, 181 p.
7. Tiggemann D. Simulation of percolation on massively-parallel computers, Аrxiv.org., 2008, pp. 1-9.
8. Averin I.A., Nikulin A.S., Moshnikov V.A., Pecherskaya R.M., Pronin I.A. Chuvstvitel'nyy element gazovogo sensora s nanostrukturirovannym poverkhnostnym rel'efom [The sensing element of gas sensor with nanostructured surface topography], Datchiki i sistemy [Sensors &
Systems], 2011, No. 2, pp. 24-27.
9. Malyutin V.M., Sklyarova E.A. Komp'yuternoe modelirovanie fizicheskikh yavleniy: Uchebnoe posobie [Computer modeling of physical phenomena: a tutorial]. Tomsk: Izd-vo TPU, 2004, 156 p.
10. Fraktaly i teoriya bifurkatsii [Fractals and bifurcation theory]. Available at: http://fractbifur.narod.ru/html/index1.html (Accessed 12 March 2015).
11. Petrov V.V., Plugotarenko N.K., Bakhmatskaya A.I. Mul'tisensornoe gazoanaliticheskoe ustroystvo: osobennosti obrabotki signalov [Multisensory gas detection device: the features of signal processing], Sensorica-2014. Sankt-Peterburg: Universitet ITMO, 2013, pp. 57.
12. Ivanov A.V., Koronovskiy A.A., Minyukhin I.M., Yashkov I.A. Opredelenie fraktal'noy razmernosti ovrazhno-balochnoy seti goroda Saratova [The definition of the fractal dimension of gully net-work of the city of Saratov], Nelineynaya dinamika v deystvii [Nonlinear Dynamics], 2006, No. 2, pp. 64-74.
13. Plugotarenko N.K., Bakhmatskaya A.I. Modelirovanie rosta fraktal'nykh struktur nanokompozitnykh materialov dlya sensorov gazov [Simulation of the formation fractal structures of nanocomposite materials for gas sensors], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 9 (158), pp. 118-124.
14. Lu P., Ivanets V. A., Semenistaya T.V., Plugotarenko N.K. Issledovanie vliyaniya struktury plenok serebrosoderzhashchego PAN na ikh gazochuvstvitel'nost' s primeneniem teorii samoorganizatsii teorii informatsii i atomno-silovoy mikroskopii [Study of the influence of the
structure of the PAN films of silver on their sensitivity using the theory of self-organization of information theory and atomic force microscopy], Nano- i mikrosistemnaya tekhnika [Nano and Microsystem Technique], 2012, No. 5, pp. 21-28.
15. Petrov V.V., Plugotarenko N.K., Korolev A.N., Nazarova T.N. Tekhnologiya formirovaniya nanokompozitnykh materialov zol'-gel' metodom [Technology of formation of nanocomposite materials by Sol-gel method]. Taganrog: Izd-vo TTI YuFU, 2011, 156 p.
16. Petrov V.V., Plugotarenko N.K., Nazarova T.N., Ageev O.A. Issledovanie tonkikh plenok sostava SiOX(SnOY)Ag skaniruyushchim zondovym mikroskopom [The study of thin films of composition SiOX(SnOY)Ag scanning probe microscope], Izvestiya TRTU [Izvestiya TSURe], 2004, No. 8 (43), pp. 247.
17. Petrov V.V., Plugotarenko N.K., Korolev A.N., Nazarova T.N. Tekhnologiya formirovaniya nanokompozitnykh materialov zol'-gel' metodom [Technology of formation of nanocomposite materials by Sol-gel method]. Taganrog: Izd-vo TTI YuFU, 2011, 156 p.
18. Myasoedova T.N., Moiseeva T.A., Petrov V.V., Kosheleva N.N. Razrabotka tekhnologii formirovaniya oksidnykh materialov dlya memristornykh struktur [Development of technology of formation of oxide materials for memristor structures], Fundamental'nye issledovaniya [Fundamental research], 2012, No. 11 (2), pp. 447-449.
19. Maksimov A.I., Moshnikov V.A. i dr. Osnovy zol'-gel'-tekhnologii nanokompozitov [Fundamentals of Sol-gel technology of nanocomposites]. 2nd ed. St. Petersburg: Elmor, 2008, 225 p.
20. Roko M.K., Uil'yamsa R.S., Alivisatosa P. Nanotekhnologiya v blizhayshem desyatiletii. Prognoz napravleniya issledovaniy [Nanotechnology in the next decade. The forecast directions of research]: Translation from English, By ed. R.A. Andrievskogo. Moscow: Mir, 2002, 292 p.
21. Moiseeva T.A., Myasoedova T.N., Petrov V.V., Kosheleva N.N. Razrabotka gazochuvstvitel'nogo elementa na osnove plenok oksidov medi dlya datchika ammiaka [The development of gas sensitive element on the basis of films of copper oxides for ammonia sensor], Inzhenernyy Vestnik Dona [Engineering journal of Don], 2012, No. 4 (Part 2). Available at:
http://www.ivdon.ru/ru/magazine/archive/n4p2y2012/1347 (Accessed 25 May 2015).

Comments are closed.