Article

Article title STUDY OF THE STRUCTURE OF POLYMERIC ORGANIC MATERIALS FILMS WITH A COPPER CONTENT OF PAN BY SELF-ORGANIZATION THEORY
Authors V.V. Petrov, N.K. Plugotarenko, T.V. Semenistaya, M.M. Falchari
Section SECTION IV. ELECTRONICS AND NANOTECHNOLOGY
Month, Year 08, 2015 @en
Index UDC 539.231:547.838.53:004.942:001.53:544.23.022.246
DOI
Abstract In this work surface of Cu-containing films of polyacrylonitrile (PAN) specimen which is conductive polymer at the expense of conjugated π-bondwere investigated. Research objective is control of getting technology of precision values required characteristics materials of calculated data models for gas sensor and other devices. Organic semiconductors research was taken by the methods of self- organization. In this case for the possibility of using this methods presence of self-organization systems in films samples was confirmed in this work. The processes of fractal structures formation in the getting of polymeric organic materials by the example of metal-containing polyacrylonitriles (PAN). Investigations by the atomic-force microscopy method of surface images of getting samples were conducted for identify technology parameters of metal-containing PAN films influence on gas sensitive property. The analyze of surface morphology were taken by the Takens’s method. The quantity of the correlation and fractal dimension of film samples was calculated. The effect of IR-annealing conditions samples and the concentration of modifying agent on the formation of fractal structures of Cu-containing films PAN estimated. Mathematical calculations show that increasing the concentration of modifying agent in films leads to the formation of larger protuberance. It was found that with increasing annealing time at identical temperatures, the size of the surface film projections is increasing. As a result of computer simulation the data obtained the values of the average mutual information (AMI) were calculated, and a correlation was found between the values of the coefficient of gas sensitivity and AMI. Based on statistical methods by the significance of the correlation values of gas sensitivity and magnitude of the AMI has been confirmed adequate evaluating the data model values.

Download PDF

Keywords PAN; AFM; AMI; theory of self-organization.
References 1. Inzelt, Gyцrgy. Conducting Polymers – A New Era in Electrochemistry. Berlin: Springer, 2010, 282 p.
2. Balint R., Cassidy N.J., Cartmell S.H. Conductive polymers: Towards a smart biomaterial for tissue engineering, Acta Biomaterialia, 2014, Vol. 10, No. 6, pp. 2341-2353.
3. Ates Murat, Karazehir Tolga and Sezai Sarac A. Conducting Polymers and their Applications, Current Physical Chemistry, 2015, Vol. 2, No. 3, pp. 224-240.
4. Li X., Wang Y., Yang X., Chen J., Fu H., Cheng T. Conducting polymers in environmental analysis, Trends in Analytical Chemistry, 2012, Vol. 39, pp. 163-179.
5. Lange U., Roznyatovskaya N.V., Mirsky V.M. Conducting polymers in chemical sensors and arrays, Analytica Chimica Acta., 2008, Vol. 614, pp. 1-26.
6. Bakshi A.K., Bhalla G. Electrically conducting polymers: Materials of the twenty-first century, J. of Scientific & industrial Research, 2004, Vol. 63, pp. 715-728.
7. Zemtsov L.M., Karpachova G.P. Khimicheskie prevrashcheniya poliakrilonitrila pod
deystviem nekogerentnogo infrakrasnogo izlucheniya [Chemical transformations of
polyacrylonitrile under the influence of incoherent infrared radiation], Vysokomolekul. soed. [The high. comm.], 1994, Vol. 36, No. 6, pp. 919-924.
8. Jing M., Wang C., Wang Q., Bai Y., Zhu B. Chemical structure evolution and mechanism during pre-carbonization of PAN-based stabilized fiber in the temperature range of 350–600 °C, Polymer Degradation and Stability, 2007, Vol. 92, pp. 1737-1742.
9. Semenistaya T.V., Petrov V.V., Bednaya T.A. Energoeffektivnye sensory gazov na osnove nanokompozitnykh organicheskikh poluprovodnikov [Energy-efficient gas sensors based nanocomposite organic semiconductors]. Taganrog: Publishing house of the SFU, 2013, 120 p.
10. Semenistaya T.V., Petrov V.V., Lu P. Nanocomposite of Ag-polyacrylonitrile as a selective chlorine sensor, Advanced Materials Research, 2013, Vol. 804, pp. 135-140.
11. Semenistaya T.V., Petrov V.V., Kalazhokov Kh.Kh., Kalazhokov Z.Kh., Karamurzov B.S., Kushkhov Kh.V., Konovalenko S.P. Study of the properties of nanocomposite cobalt-containing IR-pyrolyzed polyacrylonitrile films, Surface Engineering and Applied Electrochemistry, 2015, Vol. 51, No. 1, pp. 9-17.
12. Semenistaya T.V., Petrov V.V., Bednaya T.A., Zaruba O.A. Gasoline vapor sensor based on Cr-containing polyacrylonitrile nanocomposite films through artificial neural networks application, Materials Today: Proceedings, 2015, Vol. 2, No. 1, pp. 77-84.
13. Semenistaya T.V., Petrov V.V., Ladygina A.A. Energoefektivnye datchiki gaza na osnove nanokompozitnykh materialov metallsoderzhashchego poliakrilonitrila [Energy efficiency of gas sensors based on metal-polyacrylonitrile nanocomposites], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 4 (153), pp. 219-229.
14. Petrov V.V., Plugotarenko N.K., Semenistaya T.V. Self-organization in the thin gas-sensitive Ag-containing polyacrylonitrile films, Chaotic Modeling and Simulation, 2013, No. 4, pp. 609-614.
15. Makeeva N.A., Pin Lu, Ivanets V.A., Semenistaya T.V., Plugotarenko N.K., Korolev A.N. Prognozirovanie velichiny otklika na dioksid azota gazochuvstvitel'nogo materiala na osnove poliakrilonitrila s pomoshch'yu metodov teorii samoorganizatsii [Predicting the magnitude of response to nitrogen dioxide gas sensing material based on polyacrylonitrile by the methods of the theory of self-organization], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 4 (117), pp. 149-156.
16. Lu P., Ivanets V.A., Semenistaya T.V., Plugotarenko N.K. Issledovanie vliyaniya struktury plenok serebrosoderzhashchego PAN na ikh gazochuvstvitel'nost' s primeneniem teorii samoorganizatsii, teorii informatsii i atomno-silovoy mikroskopii [Investigation of the influence the film structure of the silver-PAN their gas sensing using self-organization theory, information theory and atomic force microscopy], Nano- i mikrosistemnaya tekhnika [Nano and Microsystem Technology], 2012, No. 5, pp. 21-28.
17. Mazurkin P.M. Statisticheskoe modelirovanie. Evristiko-matematicheskiy podkhod: Nauchnoe izdanie [Statistical modeling. Heuristic-mathematical approach: Scientific publication]. Yoshkar-Ola: Mari State Technical University, 2001, 100 p.
18. Radchenko S.G. Metodologiya regressionnogo analiza: Monografiya [Regression analysis Methodology: Monograph]. Kiev: Korniychuk, 2011, 376 p.
19. Available at: http://sci.alnam.ru/book_tinf.php?id=22, mode of visit (19 February 2015).
20. Al-Hadrami I.S., Korolev A.N., Zemtsov L.M., Karpachova G.P., Semenistaya T.V.
Issledovanie elektroprovodnosti IK-pirolizovannogo med'soderzhashchego poliakrilonitrila [Research conductivity copper-containing IR pyrolyzed polyacrylonitrile], Materialy elektronnoy tekhniki [Proceedings of the electronic equipment], 2008, No. 1, pp. 14-17.
21. Moshnikov V.A., Gracheva I.E., Kuznezov V.V. Hierarchical nanostructured semiconductor porous materials for gas sensors, Journal of Non-Crystalline Solids, 2010, Vol. 356, No. 37-40, pp. 2020-2025.
22. Bodyagin N.V., Vikhrov S.P. Prostranstvenno-vremennoy khaos v protsesse obrazovaniya tverdotel'nogo sostoyaniya [Spatio-temporal chaos in the process of formation of solid-state], PZHTF [Technical Physics Letters], 1997, Vol. 23, pp. 15.
23. Bodyagin N.V., Vikhrov S.P., Larina T.G., Mursalov S.M. Priroda nevosproizvodimosti struktury i svoystv materialov dlya mikro- i nanoelektroniki [The nature of non-reproducibility of the structure and properties of materials for micro- and nanoelectronics]. Ryazan, RGRTA, 2004, 256 p.
24. Bodyagin N.V., Larina T.V., Mursalov S.M. Protsessy rosta neuporyadochennykh
poluprovodnikov s pozitsiy teorii samoorganizatsii [Processes of growth disordered semiconductors to the theory of self-organization], Fizika i tekhnika poluprovodnikov [Semiconductors], 2005, Vol. 39, No. 8, pp. 953-959.
25. Gmurman V.E. Teoriya veroyatnostey i matematicheskaya statistika: Ucheb. posobie [Probability theory and mathematical statistics: Proc. Manual], 12nd ed., rev. Moscow: Higher Education, 2006, 479 p.
26. Mursalov S.M., Bodyagin N.V., Vikhrov S.P. O raschete korrelyatsiy v strukture v
poverkhnostnykh materialov [On the calculation of correlation structure in the surface materials'], Pis'ma v ZhTF [Technical Physics Letters], 2000, Vol. 26, pp. 15.
27. Korolenko P.V., Maganova M.S., Mesnyankin A.V. Novatsionnye metody analiza stokhasticheskikh protsessov i struktur v optike. Fraktal'nye i mul'tifraktal'nye metody, veyvlet-preobrazovaniya: Uchebnoe posobie [Novation methods of analysis of stochastic processes and structures in optics. Fractal and multifractal methods, wavelet transform. Tutorial]. Moscow: MGU im. M.V. Lomonosova. Nauchno-issledovatel'skiy institut yadernoy fiziki im. D.V. Skobel'tsyna, 2004. 82 p.
28. L'yuis K.D. Metody prognozirovaniya statisticheskikh dannykh [Forecasting methods of statistical data]. Moscow, 2009, 342 p.
29. Bednaya T.A., Konovalenko S.P., Semenistaya T.V., Petrov V.V., Korolev A.N. Gazochuvstvitel'nye elementy sensora dioksida azota i khlora na osnove kobal'tsoderzhashchego poliakrilonitrila [Gas-sensitive sensor elements nitrogen dioxide and chlorine based cobalt polyacrylonitrile], Izvestiya vysshikh uchebnykh zavedeniy. Elektronika [Proceedings of the higher educational institutions. Electronics], 2012, No. 4 (96), pp. 66-71.

Comments are closed.