Authors V.S. Klimin, A.V. Eskov, N.N. Petrov
Month, Year 09, 2015 @en
Index UDC 389.159
Abstract This article deals with the problems of plasma chemical etching of structures based on gallium arsenide. Analyzed the characteristics of the technology, it is shown that the plasma-chemical method in comparison with the liquid is high anisotropy etching process and the absence of the need for additional steps for removing the reaction products from the surface and outside of impurities contained in the initial reagents. For the experimental investigation of the interaction of GaAs with a inductively coupled plasma used cylindrical flow plasma chemical reactor. The pressure of a mixture of plasma-forming gas was 2 Pa. As experimental samples were used fragments GaAs wafers, having a standard liquid surface after polishing. Preparation of the substrate of gallium arsenide was that the surface was applied a pattern of a protective mask of photoresist plazmostoykogo. The influence of different power sources, the thickness of the plasma etched layer by etching the surface of gallium arsenide by the plasma chemical environment of process gases BCL3\AR\SF6. The analysis of the surface by atomic force microscopy, the etched surface roughness was studied. It is shown that for large power source inductively coupled plasma etched layer thickness increases, due to the large number of particles, are responsible for the formation of volatile compounds from the reaction products of reactive-ion etching. It was also shown that the rate of etching of GaAs over time with increasing power, and thus the bias voltage increases. It was found that when the power source is inductively coupled plasma burr remains relatively constant, and changes in capacitance of the plasma source power increases the rms roughness of the etched surface.

Download PDF

Keywords Nanotechnology; nanostructures; nanomaterials; gallium arsenide; plasma etching; planar technolog ; atomic force microscopy.
References 1. White А.М., Portecus P., Sherman W.F., Stadtmuller A.A. Photoca-pacitance. Measurements on Deep levels in GaAs under Hydrostatic Pressure, Solid State Phys., 1987. Vol. 10, No. 17. pp. 1473-1476.
2. Mircea A., Mitonnean A.A. Study of Electron Trap in Vapour Phase Epitaxial GaAs, J. Appl. Phys., 1999, Vol. 85, No. 2, pp. 234-247.
3. Berman A.S., Danil'chenko V.G., Korol'kov V.I., Soldatenkov F.Yu. Glubokourovnevye tsentry v nelegirovannykh sloyakh p-GaAs, vyrashchennykh metodom zhidkofaznoy epitaksii [Glubokovodnye centers in non-alloyed layers of p-GaAs grown by liquid-phase epitaxy], FTP [Fizika i Tekhnika Poluprovodnikov], 2000, Vol. 34, Issue 5, pp. 558-561.
4. Sakurai-Hiromi, Yamanaka Zusao, Yoshida Kohichi, Ohshima Naoto, Suzuki Katsuo. Ultrasonic. Attenuation in p-type GaSb, G. Appl Phys., 1984, Vol. 56, No. 6, pp. 1613-1616.
5. Mitrokhin V.I., Rembeza S.I., Sviridov V.V., Yaroslavtsev N.P. Acoustic Probing of Deep Centers in Ш-V semiconductors, Phys. Status Sol. (a), 1990, Vol. 119, No. 2, pp. 535-544.
6. Lagouski G, Jatos H.C., Parsey G.M., Wada K., Kaminska M., Walukiewicz W. Origin of the 0.82 eV Electron Trap in GaAs and its Annihilation by Shallow Donors, Appl. Phys. Letts., 1982, Vol. 40, No. 4, pp. 342-344.
7. Aronov D.A., Mamatkulov V.V. The Capacitance and Characteristics Relaxation Times it Carrier Exclussion in Compensated Semiconductors with Deep Traps and Non-Injecting Contacts, Phys. Stat. Sol., 1984, A. 81, No. 1, pp. 85-89.
8. Ageev O.A., Varzarev Yu.N., Solodovnik M.S., Rukomoykin A.V. Poluchenie i issledovanie HEMT-struktur na osnove GaAs dlya SVCh-polevykh tranzistorov na nanotekhnologicheskom komplekse NANOFAB NTK-9 [Obtaining and investigation of HEMT-structure based on
GaAs for ultra high frequency field effect transistors at nanotechnological system NANOFAB NTF-9], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 4 (117), pp. 13-21.
9. Ageev O.A., Konoplev B.G., Rubashkina M.V., Rukomoykin A.V., Smirnov V.A., Solodovnik M.S. Issledovanie vliyaniya geometricheskikh parametrov na modul' Yunga orientirovannykh nitevidnykh nanokristallov GaAs metodom atomno-silovoy mikroskopii [Study of the influence of geometric parameters on young's modulus of oriented filamentary nanocrystals of
GaAs by atomic force microscopy], Rossiyskie nanotekhnologii [Nanotechnologies in Russia], 2013, Vol. 8, No. 1-2, pp. 20-25.
10. Ageev O.A., Smirnov V.A., Solodovnik M.S., Avilov V.I. Issledovanie rezhimov lokal'nogo anodnogo okisleniya epitaksial'nykh struktur arsenida galliya [Gallium arsenide epitaxial structures local anodic oxidation regimes investigation], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 4 (117), pp. 8-13.
11. Joyce B.A., Vvedensky D.D., Bell G.R., Belk J.G., Itoh M., Jones T.S. Nucleation and growth mechanisms during MBE of III-V compounds, Mat. Sci. Eng. B, 1999, Vol. 67, pp. 7-16.
12. LaBella V.P., Bullock D.W., Ding Z., Emery C., Harter W.G., Thibado P.M. Monte Carlo derived diffusion parameters for Ga on the GaAs(001)-(2Ч4) surface: A molecular beam epitaxy–scanning tunneling microscopy study, J. Vac. Sci. Tech. A, 2000, Vol. 18, No. 4, pp. 1526-1531.
13. Ledentsov N.N., Ustinov V.M., Shchukin V.A., Kop'ev P.S., Alferov Zh.I., Bimberg D. Geterostruktury s kvantovymi tochkami: poluchenie, svoystva, lazery [Heterostructures with quantum dots: fabrication, properties, lasers], Fizika i tekhnika poluprovodnikov [Fizika i
Tekhnika Poluprovodnikov], 1998, Vol. 32, No. 4, pp. 385-410.
14. Ohtake A., Ozeki M. In situ observation of surface processes in InAs/GaAs(001) heteroepitaxy: The role of As on the growth mode, Appl. Phys. Lett., 2001, Vol. 78, pp. 431.
15. Riel B.J., Hinzer K., Moisa S., Fraser J., Finnie P., Piercy P., Fafard S., Wasilewski Z.R. InAs/GaAs(100) self-assembled quantum dots: arsenic pressure and capping effects, J. Cryst. Growth., 2002, Vol. 236, pp. 145-154.
16. Morgan C.G., Kratzer P., Scheffler M. Arsenic Dimer Dynamics during MBE Growth: Theoretical Evidence for a Novel Chemisorption State of As2 Molecules on GaAs Surfaces, Phys. Rev. Lett., 1999, Vol. 82, No. 24, pp. 4886-4889.
17. Shchukin V., Scholl E., Kratzer P. Thermodynamics and Kinetics of Quantum Dot Growth, Semiconductor Nanostructures, ed. Bimberg D. Berlin: Springer Berlin Heidelberg, 2008.
18. Daweritz L., Ploog K. Contribution of reflection high-energy electron diffraction to nanometre tailoring of surfaces and interfaces by molecular beam epitaxy, Semicond. Sci. Tech., 1994, Vol. 9, No. 2, pp. 123-136.
19. Frenkel J. Theorie der Adsorption und verwandter Ersheinungen, Zeitschrift fьr Physik, 1924, Vol. 26, No. 1, pp. 117-138.
20. Nakamura S. High-power GaN p-n junction blue-light-emitting diodes, Annu. Rev. Mater. Sci., 1998, Vol. 28, pp. 125-152.
21. Ageev O.A., Kolomiytsev A.S., Mikhaylichenko A.V., Smirnov V.A., Ptashnik V.V., Solodovnik M.S., Fedotov A.A., Zamburg E.G., Klimin V.S., Il'in O.I., Gromov A.L., Rukomoykin A.V. Poluchenie nanorazmernykh struktur na osnove nanotekhnologicheskogo kompleksa NANOFAB NTK-9
[Nanoscale structures’ production based on modular nanotechnologycal platform NANOFAB] Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 1 (114), pp. 109-116.
22. Rukomoykin A.V., Solodovnik M.S. Formirovanie i issledovanie arsenid-gallievykh nanostruktur na nanotekhnologicheskom komplekse NANOFAB NTK-9 [Forming and investigation of arsenide gallium nanostructure at nanotechnological system NANOFAB NTF-9], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 4 (117), pp. 237-238.
23. Available at:

Comments are closed.