Authors E.A. Ryndin, M.A. Denisenko, A.S. Isaeva
Month, Year 09, 2015 @en
Index UDC 621.373.826
Abstract The method of constructing of functionally integrated injection laser-modulator that combines in a single nanoheterostructure injection laser and a fast modulator of optical radiation, which allows, on the one hand, to extend the range of modulation frequencies up to one terahertz, and the other, to guarantee high productivity and possibility of realization of lasers and modulators on a chip of integrated circuit in a single technological cycle. The power circuit of the laser-modulator sets the constant pump current, which provides the fixed in time total number of charge carriers in quantum wells of heterostructure active region. Amplitude modulation of laser radiation is carried out by changing the controlling field transverse to the direction of the pump current density. The change in the direction of transverse operating field at a constant pumping current leads to the relocation of charge carriers in quantum spatially shifted areas, the result of which is a spatial combination or splitting of maximums density of electrons and holes in quantum wells of the conduction and valence bands, leading to an increase or a decrease in the intensity of the laser radiation. A comparative analysis of the limitations of conventional models of injection lasers based on equations of kinetics and the equations of the fundamental system has been implemented. Based on the analysis of the fundamental system of equations of semiconductor in the diffusion-drift approximation and kinetic equations of the lasers physical-topological and circuit models were developed with different levels of detail to conduct numerical analysis of the dynamics of processes in the injection lasers-modulators with regard to their structural and topological features, doping profile, the uneven spatial distributions of electrons, holes and photons concentrations in the active region of the laser, the characteristics of the spatial distribution of the current density, the influence of peripheral areas of the laser-modulator on its characteristics.

Download PDF

Keywords Injection laser; modulator of optical radiation; model.
References 1. Horowitz M., Chih-Kong Ken Yang, Sidiropoulos S. High-speed electrical signaling: overview and limitations, IEEE Micro, 1998, No. 18 (1), pp. 12–24.
2. Miller D. Device Requirements for Optical Interconnects to Silicon Chips, Proceedings IEEE, 2009, No. 97 (7), pp. 1166-1185.
3. Apostolopoulos D., Bakopoulos P., Kalavrouziotis D., Giannoulis G., Kanakis G., Iliadis N., Spatharakis C., Bauwelinck J., Avramopoulos H. Photonic integration enabling new multiplexing concepts in optical board-to-board and rack-to-rack interconnects, Proceedings of SPIE, Vol. 8991, pp. 89910D-1–89910D-15.
4. Konoplev B.G., Ryndin E.A., Denisenko M.A. Injection laser with a functionally integrated frequency modulator based on spatially shifted quantum wells, Technical Physics Letters, 2013, No. 39 (11), pp. 986-989.
5. Ryndin E.A., Denisenko M.A. A functionally integrated injection laser-modulator with the radiation frequency modulation, Russian Microelectronics, 2013, No. 42 (6), pp. 360-362.
6. Konoplev B.G., Ryndin E.A., Denisenko M.A. Metod postroeniya integral'nykh sistem opticheskoy kommutatsii mnogoyadernykh UBIS [Method of constructing integrated switching systems of multi-core ULSI], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences]. 2011, No. 4 (117), pp. 21-27.
7. Konoplev B.G., Ryndin E.A., Denisenko M.A. Integral'nyy inzhektsionnyy lazer s upravlyaemoy peredislokatsiey maksimuma amplitudy volnovykh funktsiy nositeley zaryada [Integrated injection laser with controlled relocation of amplitude maximum of wave functions of charge carriers]. Patent RF, No. 2400000, 2010.
8. Konoplev B.G., Ryndin E.A., Denisenko M.A. Integral'nyy inzhektsionnyy lazer s modulyatsiey chastoty izlucheniya posredstvom upravlyaemoy peredislokatsii maksimuma amplitudy volnovykh funktsiy nositeley zaryada [Integrated injection laser with a fashion-stimulation frequency radiation through a managed relocation of the maximum of the am plitude wave
functions of charge carriers]. Patent RF, No. 2520947, 2014.
9. Konoplev B.G., Ryndin E.A., Ageev O.A., Varzarev Yu.N., Kolomiytsev A.S. Cverkhbystrodeystvuyushchie elementy integral'nykh skhem na osnove svyazannykh kvantovykh oblastey [Ultrahigh-speed IC elements based on coupled quantum fields], Naukoemkie tekhnologii dlya innovatsionnoy industrii yuzhnogo makroregiona [Knowledge-intensive technology innovation for industry in the South macroregion], 2011, pp. 83-99.
10. Ozyazici M.S. The complete electrical equivalent circuit of a double heterojunction laser diode using scatterring parameters, Journal of Optoelectronics and Advanced Materials, 2004, Vol. 6, No. 4, pp. 1243-1253.
11. Lim D.W., Cho H.U., Sung H.K., Yi J.C., Jhon Y.M. A PSPICE circuit modeling of strained AlGaInN laser diode based on the multilevel rate equations, Journal of the Optical Society of Korea, 2009, Vol. 13, No. 3, pp. 386-391.
12. Tucker R.S. Large-signal circuit model for simulation of injection-laser modulation dynamics, IEE Proceedings, 1981, Vol. 128, No. 5, pp.180-184.
13. Abramov I.I., Kharitonov V.V. Chislennoe modelirovanie elementov integral'nykh skhem [Numerical modeling of elements of integrated circuits], ed. by A.G. Shashkova. Minsk: Vysh. shk., 1990, 224 p.
14. Bubennikov A.N., Sadovnikov A.D. Fiziko-tekhnologicheskoe proektirovanie bipolyarnykh elementov kremnievykh BIS [Physico-technological design of silicon bipolar LSI elements]. Moscow: Radio i svyaz', 1991, 288 p.
15. Abramov I.I. Problemy i printsipy fiziki i modelirovaniya pribornykh struktur mikro- i nanoelektroniki. Part II. Modeli poluklassicheskogo podkhoda [Problems and principles of physics and modeling of device structures of micro- and nanoelectronics. Part II. Model
semiclassical approach], Nano- i mikrosistemnaya tekhnika [Nano and Microsystem Technique], 2006, No. 9, pp. 26-36.
16. Zarifkar A., Ansari L., Moravvej-Farshi M.K. An equivalent circuit model for analyzing separate confinement heterostructure quantum well laser diodes including chirp and carrier transport effects, Fiber and Integrated Optics, 2009, No. 28, pp. 249-267.
17. Konoplev B.G., Ryndin E.A. A Study of the Transport of Charge Carriers in Coupled Quantum Regions, Semiconductors, 2008, Vol. 42, No. 13, pp. 1462-1468.
18. Konoplev B.G., Ryndin E.A., Denisenko M.A. Diffusion-Drift Model of the Transport of Charge Carriers and Photons in Injection Lasers, Technical Physics Letters, 2015, Vol. 41, No. 6, pp. 587-590.
19. Konoplev B.G., Ryndin E.A., Denisenko M.A. Numerical modeling of functionally integrated injection lasers-modulators, Proceedings of SPIE. 2014. International Conference on Micro- and Nano-Electronics, 2014, Vol. 9440, pp. 944014-1-944014-11.
20. Ryndin E.A., Denisenko M.A. Fiziko-topologicheskaya model' inzhektsionnykh lazerov s dvoynoy geterostrukturoy [Physical-and-topological model of injection lasers with the double heterostructure], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 9 (158), pp. 32-39.

Comments are closed.