Authors P.Yu. Voloshchenko, Yu.P. Voloshchenko
Month, Year 09, 2015 @en
Index UDC 621.372.064
Abstract It is known that hybrid and monolithic integrated circuits for gigahertz and terahertz wave ranges should be developed on the basis of macromodel presenting composite material as a single volume. The electric structure of conductivity and induction current circulation outside and inside it is formed by open array of conductors, dielectric and semi-isolating areas of tube and semiconductor microwave electronic devices which are coherently functioning in common electromagnetic field. The theory of a one-dimensional nonlinear electric circuit and electronic wave chain is used to synthesize the graphic-analytical operators for its mathematical model. The solution to the energy consumption minimization and heating problem of such artificial material is to optimize positive and negative connections of microwave electronic devices on the basis of coherent micro-, nano-, radioelectronics technology and analog and digital equipment producibility in Russia. The methods of equivalent circuit, complex amplitude and harmonic linearization are used to study amplitude dynamics of inertial electronic processes in case of signal overlapping and transmission in structure. Priority task of microwave material researching is obligatory correctness verification of macromodel graphic-analytical operators with regard to signal amplitude and electrical balance stated by Kirchhoff"s laws, Telledzhen"s theorem and Pierce-Kotelnikov"s conditions. On "virtual" borders of electronic wave circuit the impedance conditions are found under which the current growth is followed by voltage reducing and it varies synchronously in branches of microelectronic structure. It is shown that the reflected electromagnetic waves can have the intensity exceeding initial impact which creates the possibility for self-excitation of superfast integrated circuits for different applications.

Download PDF

Keywords Long line; wave nonlinear element; resistance-negatron two-terminal network; theory of distributed parameter electronic circuit.
References 1. Voloshchenko P.Yu., Voloshchenko Yu.P., Vavilov V.G., Chernobrovy V.S. Symbolic analysis of electric structure of material for analog and digital coherent electronics products, Abstracts and Schedule of the 2015 International Conference on “Physics and Mechanics of New Materials and Their Applications” (PHENMA 2015). Azov, Russia, May 19–22, 2015 Southern Federal University Press: Rostov-on-Don, 2015, pp. 259-260.
2. Voloshchenko P.Yu., Voloshchenko Yu.P., Vavilov V.G., Zaycev A.I. Mathematical modeling of electromagnetic wave processes in materials of high-speed integrated circuits, Abstracts and Schedule of the 2015 International Conference on “Physics and Mechanics of New Materials and Their Applications” (PHENMA 2015). Azov, Russia, May 19–22, 2015 Southern Federal University Press: Rostov-on-Don, 2015, pp. 260-261.
3. Voloshchenko P.Yu., Voloshchenko Yu.P. Metodologiya matematicheskogo modelirovaniya nelineynykh volnovykh i kolebatel'nykh elektricheskikh protsessov v izdeliyakh kogerentnoy radio-, mikro- i nanoelektroniki [The methodology of mathematical modeling of nonlinear wave and oscillatory electrical processes in the coherent products of radio-, micro- and nanoelectronics]. Taganrog: Izd-vo YuFU, 2013, 110 p.
4. Voloshchenko P.Yu., Voloshchenko Yu.P. Osnovy sistemnogo modelirovaniya elektricheskoy struktury integratsii sverkhbystrodeystvuyushchikh elektronnykh priborov [Basics of system modeling electrical structure of the integration ultrafast electronic devices]. Rostov-on-Don: Izd-vo YuFU, 2014, 94 p.
5. Voloshchenko P.Yu. Analiz transformatsii amplitudy voln nelineynym elementom,
razmeshchennym v dlinnoy linii [The analysis of the transformation amplitude waves nonlinear element, placed in a long line], Izvestiya vuzov. Elektromekhanika [Russian Electromechanics], 2010, No. 4, pp. 3-5.
6. Voloshchenko P.Yu. Obrashchennyy analiz elektromagnitnykh protsessov v dlinnoy linii s aktivnym nelineynym elementom [The inverted analysis of electromagnetic processes in a long line with an active nonlinear element], Izvestiya vuzov. Elektromekhanika [Russian Electromechanics], 2010, No. 6, pp. 21-24.
7. Voloshchenko Yu.P. Algoritmy analiza volnovykh protsessov v dlinnoy linii s aktivnymi nelineynymi dvukhpolyusnikami: Avtoref. diss. ... kand. tekhn. nauk [Algorithms for the analysis of wave processes in long line with an active nonlinear two-terminal: autho. Cand. of eng. sc. diss. 05.09.05. Novocherkassk, 2009. 20 p. Available at:
8. Voloshchenko P.Yu., Voloshchenko Yu.P. Modelirovanie elektricheskogo polya fragmenta sverkhskorostnoy integral'noy skhemy [Modeling of the electric field of the fragment ultrafast integrated circuits], Nelineynyy mir [Nonlinear World], 2007, No. 10‒11, pp. 689-696.
9. Pivnev V.V., Basan S.N., Voloshchenko Y.P. The Application of Approximation Characteristics Non-Linear Resistor Implement the Required Current-Voltage Characteristics, Proceedings of International Conference on Advances in Energy, Environment and Chemical Engineering (AEECE 2015), The proceedings series Advances in Engineering Research (AER) (ISSN 2352-5401) Amsterdam-Beijing-Paris: Atlantis Press, 2015. Available at:
10. Bakhvalov Yu.A., Gorbatenko N.I., Grechikhin V.V. Obratnye zadachi elektrotekhniki [The inverse problem of electrical engineering], Izvestiya vuzov. Elektromekhanika [Russian Electromechanics], 2014, 211 p.
11. Neyman L.R., Demirchyan K.S. Teoreticheskie osnovy elektrotekhniki [Fundamentals of electrical engineering]. Moscow– Leningrad: Energiya, 1966, Vol. 1, 522 p., Vol. 2, 408 p.
12. Zernov N.V., Karpov V.G. Teoriya radiotekhnicheskikh tsepey [The theory of radio circuits]. Leningrad: Energiya, 1972, 816 p.
13. Popov V.P. Osnovy teorii tsepey [Fundamentals of theory of circuits]. Moscow: Vysshaya shkola, 1985, 496 p.
14. Ortyuzi Zh. Teoriya elektronnykh tsepey [The theory of electronic circuits]. Vol. 1. Analiz [Analysis]. Moscow: Mir, 1970, 408 p.
15. Lebedev I.V. Tekhnika i pribory SVCh [Appliances and microwave devices], ed. by N.D. Devyatkova. Moscow: Vysshaya shkola, 1970, 440 p.
16. Baskakov S.I. Radiotekhnicheskie tsepi s raspredelennymi parametrami [Radio technical chains with distributed parameters]. Moscow: Vysshaya shkola, 1980, 152 p.
17. Basan S.N. Osnovnye teoremy teorii lineynykh skhem zameshcheniya elektricheskikh i elektronnykh tsepey [Basic theorems of the theory of linear electrical circuits and electronic circuits]. Taganrog: TRTU, 1994, 109 p.
18. Davis W. Alan. Microwave semiconductor circuit design. New York: Van Nostrand Reinhold Company Inc. 1984, 415 p.
19. Andreev V.S. Teoriya nelineynykh elektricheskikh tsepey [The theory of nonlinear electrical circuits]. Moscow: Radio i svyaz', 1983, 280 p.
20. Vendelin G.D., Pavio A.M., Rohde U.L. Microwave Circuit Design Using Linear and Nonlinear Techniques. Hoboken, New Jersey: John Wiley & Sons, Inc, 2005, 1058 p.
21. Maas S.A. Nonlinear Microwave and RF Circuits. Norwood, МА: Artech House, 2003, 582 р.
22. Srivastava G.P., Gupta V.L. Microwave devices and circuit design. Delhi: PHI Learning Pvt. Ltd., 2006, 480 p.
23. Snowden C.M., Miles R.E. Compound Semiconductor Device Modelling. Berlin: Springer Science & Business Media, 1993, 286 p.
24. Kurokawa K. An Introduction to the Theory of Microwave Circuits. London: Academic Press, 1969, 446 p.

Comments are closed.