Authors M.V. Ilina, Yu.F. Blinov, V.A. Smirnov, A.A. Konshin, Trinh Van Muoi
Month, Year 09, 2015 @en
Index UDC 621.38-022.532
Abstract One of the priority areas of evolution of modern nanoelectronics is the development and creation of nonvolatile memory elements with high speed and density information recording. A promising direction in this area is the development and study of nanoscale memristor structures. In this paper the principle of operation of the nonvolatile memory cell based on memristor structure with the vertically aligned carbon nanotube (VA CNT) is presented. It is shown that the resistive switching of the memristor structure is associated with deformation of the VA CNT under the influence of an external electric field and the van der Waals interaction with the separated by a tunneling gap upper electrode. The theoretical studies of the influence of diameter, length and Young"s modulus of the VA CNT, the tunneling gap and the applied voltage on the resistive switching of the structure based on the VA CNT are carried. Values of the van der Waals, electrostatic and elastic forces occurring in the structure are evaluated. It is shown that the structure based on VA CNT with Young"s modulus of 1 TPa, height of 2 µm and diameter of 10 to 100 nm at tunneling gap between the top of the nanotube and the upper electrode from 1,0 to 1,5 nm has memristor effect. Based on the memristor structure with the VA CNT the nonvolatile memory cell with a switching time of ~ 10-12 s, and read voltage less than 1 V, write voltage about 2 V, and the erase voltage of about 6 V is developed. The obtained results can be used to develop a nonvolatile memory of high speed and density of information recording, based on memristor structures with vertically aligned carbon nanotubes.

Download PDF

Keywords Nanotechnology; nanoelectronics; memristor; vertically aligned carbon nanotubes; VA CNT; nonvolatile memory; piezoelectric charge; deformation.
References 1. Meena J.S., Sze S.M., Chand U., Tseng T.-Y. Overview of emerging nonvolatile memory technologies, Nanoscale Research Letters, 2014, Vol. 9 (1), pp. 1-33.
2. Lee J.S. Progress in non-volatile memory devices based on nanostructured materials and nanofabrication, Journal of Materials Chemistry, 2011, Vol. 21, No. 37, pp. 14097-14112.
3. Raoux S., Burr G.W., Breitwisch M.J., Rettner C.T., Chen Y.-C., Shelby R.M., Salinga M., Krebs D., Chen S.-H., Lung H.-L., Lam C.H. Phase-change random access memory: A scalable technology, IBM J. RES. & DEV, 2008, Vol. 52, No. 4/5, pp. 465-479.
4. Bichoutskaia E., Popov A.M., Lozovik Yu.E. Nanotube-based data storage devices, Materials Today, 2008, Vol. 11, No. 6, pp. 38-43.
5. Yao J., Jin Z., Zhong L., Natelson D., Tour J.M. Two-Terminal Nonvolatile Memories Based on Single-Walled Carbon Nanotubes, ACS Nano, 2009, Vol. 3, No. 12, pp. 4122-4126.
6. Lu X.B., Dai J.Y. Memory effects of carbon nanotubes as charge storage nodes for floating gate memory applications, Applied Physics Letters, 2006, Vol. 88, pp. 113104 (3).
7. Rueckes T., Kim K., Joselevich E., Tseng G.Y., Cheung C.-L., Lieber C.M. Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing, Science, 2000, Vol. 289, No. 7, pp. 94-97.
8. Jang J.E., Cha S.N., Choi Y., Amaratunga G.A.J. Nanoelectromechanical switches with vertically aligned carbon nanotubes, Applied Physics Letters, 2005, Vol. 87, pp. 163114(3).
9. Kinaret J.M., Nord T., Viefers S. A carbon-nanotube-based nanorelay, Applied Physics Letters, 2003, Vol. 82, No. 8, pp. 1287-1289.
10. Lee S.W., Lee D.S., Morjan R.E., Jhang S.H., Sveningsson M., Nerushev O.A., Park Y.W., Campbell E.E.B. A Three-Terminal Carbon Nanorelay, Nano Lett., 2004, Vol. 4, No. 10, pp. 2027-2030.
11. Chen H., Roy A., Baek J.-B., Zhu L., Qua J., Dai L. Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications, Materials Science and Engineering R, 2010, Vol. 70, pp. 63-91.
12. Ageev O.A., Il'in O.I., Klimin V.S., Kolomiytsev A.S., Fedotov A.A. Issledovanie rezhimov formirovaniya i modifikatsii orientirovannykh massivov uglerodnykh nanotrubok metodom PECVD na nanotekhnologicheskom komplekse NANOFAB NTK-9 [Research modes of the formation and modification oriented arrays of carbon nanotubes by PECVD on nanotechnological complex NANOFAB NTK-9], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 4 (117), pp. 69-77.
13. Ageev O.A., Il'in O.I., Klimin V.S., Konoplev B.G., Fedotov A.A. Issledovanie rezhimov formirovaniya kataliticheskikh tsentrov dlya vyrashchivaniya orientirovannykh massivov uglerodnykh nanotrubok metodom PECVD [Study mode-the MOU for the formation of catalytic centers for growing oriented arrays of carbon nanotubes by PECVD], Khimicheskaya fizika i mezoskopiya [Chemical physics and mesoscopy], 2011, Vol. 13, No. 2, pp. 226-231.
14. Strukov D., Snider G., Stewart D. The missing memristor found, Nature, 2008, Vol. 453, pp. 80-83.
15. Akinaga H., Shima H. Resistive Random Access Memory (ReRAM) Based on Metal Oxides, Proceedings of the IEEE, 2010, Vol. 98, No. 12, pp. 2237-2251.
16. Avilov V.I., Ageev O.A., Kolomiitsev A.S., Konoplev B.G., Smirnov V.A., Tsukanova O.G. Formation of a Memristor Matrix Based on Titanium Oxide and Investigation by Probe Nanotechnology Methods, Semiconductors, 2014, Vol. 48, No. 13, pp. 1757-1762.
17. Ageev O.A., Blinov Yu.F., Ilin O.I., Kolomiitsev A.S., Konoplev B.G., Rubashkina M.V., Smirnov V.A., Fedotov A.A. Memristor Effect on Bundles of Vertically Aligned Carbon Nanotubes Tested by Scanning Tunnel Microscopy, Technical Physics, 2013, Vol. 58, No. 12, pp. 1831-1836.
18. Ageev O.A., Blinov Yu.F., Ilin O.I., Konoplev B.G., Rubashkina M.V., Smirnov V.A., Fedotov A.A. Study of the Resistive Switching of Vertically Aligned Carbon Nanotubes by Scanning Tunneling Microscopy, Physics of the Solid State, 2015, Vol. 57, No 4, pp. 825-831.
19. Alekseev A.N., Sokolov I.A., Ageev O.A., Konoplev B.G. Kompleksnyy podkhod k
tekhnologicheskomu osnashcheniyu tsentra prikladnykh razrabotok. Opyt realizatsii v NOTs «Nanotekhnologii» YuFU [Comprehensive approach to technological equipping for R&D center. the experience in implementing of SEC «Nanotechnology» SFedU], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 4 (117), pp. 207-210.
20. Syurik Y.V., Ageev O.A., Ghislandi M.G., Tkalya E.E., Paterson G., McGrouther D., Loos J. Graphene network organisation in conductive polymer composites, Macromolecular Chemistry and Physics, 2012, Vol. 213, No 12, pp. 1251-1258.
21. Ageev O.A., Syurik Yu.V., Klimin V.S., Fedotov A.A. Poluchenie nanokompozitnykh polimernykh materialov, modifitsirovannykh uglerodnymi nanostrukturami, na osnove NANOFAB NTK-9 [Creating nanocomposite polymeric materials modified carbon nanostructures based on NANOFAB NTC-9] Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2009, No. 1 (90), pp. 135-142.
22. Rubashkina M.V., Ageev O.A., Blinov Yu.F., Smirnov V.A. Modelirovanie rezistivnogo pereklyucheniya vertikal'no orientirovannoy uglerodnoy nanotrubki [Simulation of the resistive switching of vertically aligned carbon nanotube], Materialy 25-y Mezhdunarodnoy Krymskoy konferentsii «SVCh-tekhnika i telekommunikatsionnye tekhnologii», g. Sevastopol' [Materials of 25-th International Crimean conference "Microwave Equipment and Telecommunication Technologies", Sevastopol], 2015, Vol. 2, pp. 737-738.
23. Ageev O.A., Ilin O.I., Rubashkina M.V., Smirnov V.A., Fedotov A.A. Investigation of Effect of Geometrical Parameters of Vertically Aligned Carbon Nanotubes on their Mechanical Properties, Advanced Materials Research, 2014, Vol. 894, pp. 355-359.
24. Ageev O.A., Ilin O.I., Kolomiitsev A.S., Konoplev B.G., Rubashkina M.V., Smirnov V.A., Fedotov A.A. Development of a technique for determining Youngs modulus of vertically aligned carbon nanotubes using the nanoindentation method, Nanotechnologies in Russia, 2012, Vol. 7l, No 1-2, pp. 47-53.

Comments are closed.